RAM 713 Fan Coil room thermostat

RAM 713 Fan Coil

713 9 202

Contents

1	Functi	onal characteristics	4
	1.1 O	peration	5
		he device LEDs	
	1.3 B	enefits of RAM 713 FAN COIL	6
	1.3.1	Special features	6
2	Techni	ical data	7
3	The ap	plication program "RAM 713 FAN COIL V1.3"	8
		election in the product database	
	3.2 Pa	arameter pages	8
	3.3 C	ommunication objects	9
	3.3.1	Object characteristics	9
	3.3.2	Description of objects	11
	3.4 Pa	arameters	15
	3.4.1	Settings	15
	3.4.2	Setpoint values	16
	3.4.3	Cooling setpoint values	18
	3.4.4	Operation	
	3.4.5	Actual value	22
	3.4.6	Control	.24
	3.4.7	Operating mode	.27
	3.4.8	Inputs E1, E2, E3	
4	Start-u		31
	4.1 A	ctuators to control heating and cooling	31
		ontrol variable display	
5	Typica	l applications:	32
	5.1 B	ase configuration (4-pipe system): Heating and cooling with RAM 713 FC as	
	external of	control for FCA 1	32
	5.1.1	Devices:	32
	5.1.2	Overview	32
	5.1.3	Objects and links	32
	5.1.4	Important parameter settings	33
	5.2 B	ase configuration (2-pipe system): Heating and cooling with RAM 713 FC as	
	external of	control for FCA 1	34
	5.2.1	Special features	34
	5.2.2	Devices:	34
	5.2.3	Overview	34
	5.2.4	Objects and links	35
	5.2.5	Important parameter settings	35
	5.3 T	ypical application (4-pipe system):	36
	5.3.1	Function:	36
	5.3.2	Devices:	36
	5.3.3	Overview	36
	5.3.4	Implementation:	37
	Object	s and links	38
	5.3.5	Important parameter settings	39

	5.4 S	witching, blinds control a dimming with devices in the MiX range, in addition	to
	control o	perating mode	40
5.4.1 Devices:		Devices:	40
5.4.2 Overview		Overview	40
	5.4.3	Objects and links	41
	5.4.4	Important parameter settings	
	5.4.5	Frost protection via window contact	
6	Appen	ıdix	
		an forced mode	
	6.1.1		
	6.2 D	Determining the current operating mode	
	6.2.1	New operating modes	
	6.2.2	Old operating modes	
	6.2.3		
	6.3 S	etpoint offset	
	6.3.1	Setpoint temperature offset using the rotary control	50
	6.3.2		
	6.3.3	Setting the presence object with setpoint value offset	
	6.4 E	xternal interface	
	6.4.1	Overview: Function of Objects 9 14.	
	6.4.2	E1E3 as switching inputs	
	6.4.3	E1E2 Blinds Up / Down	
	6.4.4	Blinds single-surface operation	
	6.4.5	E1 E2 Dim brighter / darker	
	6.4.6	Dimming single-surface operation	
	6.4.7	E3 as an analogue input for an external sensor	
	6.4.8	Suitable actuators	
		emperature control	
	6.5.1	1	
	6.5.2	Response of the P-control	
	6.5.3	Response of the PI control	
7	Glossa	ary	
	7.1 C	Continuous and switching control	61
		Iysteresis	
	7.2.1	Negative hysteresis:	
	7.2.2	Positive hysteresis	62
	7.3 D	Dead zone	
	7.3.1	Heating and cooling with continuous control	
		Base setpoint value and current setpoint value	
	7.4.1	Setpoint value calculation	

1 Functional characteristics

The RAM 713 FAN COIL room thermostat is a continuous EIB room thermostat for ventilator convectors (fan coil) in 2 and 4 pipe systems.

It measures the current room temperature (actual value) and sends a <u>continuous control</u> <u>variable</u> (0...100%) to a fan coil actuator (FCA 1 order no. 492 0 200) to achieve the desired room temperature (setpoint value).

The RAM 713 fan coil works in both heating and cooling modes. A fan step can also be selected manually via a button.

3 binary inputs (see <u>external interface</u>) are available for connecting switches or buttons (floating) for switching, dimming or controlling blinds.

The blinds and dimmer channels can also be controlled with a single button (single-surface operation)

An external temperature sensor can alternatively be connected to input 3 (analogue).

In order to easily adapt to the setpoint values in respect of living comfort and energy saving, RAM 713 FAN COIL has four operating modes:

- Comfort
- Standby
- Night mode
- Frost protection mode

A setpoint value is assigned to each operating mode.

comfort mode is used when the room is occupied

The setpoint value is reduced slightly in **standby mode**. This operating mode is used when the room is not occupied but is expected to be shortly.

The setpoint value is drastically reduced in **night mode** as the room is not expected to be occupied for several hours.

In **frost protection mode**, the room is controlled to a temperature that eliminates the risk of damage to the radiators through freezing at low outdoor temperatures.

This can be desirable for 2 reasons:

- The room is not occupied for several days.
- A window has been opened and no further heating is required for the time being.

The operating modes are usually controlled by a time switch.

However, a presence detector and/or presence keys and window contacts are recommended for optimum control.

See <u>determining the setpoint value</u> chapter.

1.1 Operation

The RAM 713 FAN COIL is fitted with a rotary control and 5 LEDs to display the current fan step.

The fan step can also be set manually using the button to the right of the LEDs (forced mode).

1.2 The device LEDs

Table 1

LED	Display	Description
Auto	Fan is in automatic mode	Fan step is controlled, as configured, depending on the
		control variable.
		See <i>operation</i> parameter page.
0	Fan step $0 = $ fan is off.	Forced mode:
1	Fan step 1	Fan step is selected manually by pressing the button.
2	Fan step 2	
3	Fan step 3	

Depending on the configuration, the rotary control can be used for either setpoint **adjustment** or for setpoint **offset**.

1.3 Benefits of RAM 713 FAN COIL

- Continuous <u>PI</u> room thermostat
- Fan step can be preselected manually
- <u>Operating mode change</u> via presence and window objects
- Heating and cooling operation
- <u>Rotary control</u> for setting or offsetting setpoint value
- Infinite regulation through continuous control variable
- 3 <u>Binary inputs</u> for conventional control of switch, dimmer and blinds actuators
- Third input also for <u>external temperature sensor</u> for determining room temperature
- Adjustable effect with binary inputs
- Blinds and dimmers can also be controlled using single-surface operation

1.3.1 Special features

RAM 713 FAN COIL has <u>3 external inputs</u> for buttons, switches or an external sensor. These can be used to control switch, dimmer or blinds actuators.

2 Technical data

Power supply:	Bus voltage
Permitted operating temperature:	0°C+ 50°C
Protection class:	III
Protection rating:	EN 60529: IP 21
Dimensions:	HxWxD 80x84x28 (mm)
Inputs:	
Quantity:	3
Contact voltage:	3.3 V internal provided
Contact current:	1 mA
Maximum line length:	5 m

3 The application program "RAM 713 FAN COIL V1.3"

3.1 Selection in the product database

Manufacturer	Theben AG		
Product family Heating, ventilation, air conditioning			
Product type	Product type Fan coil controller		
Program name RAM 713 Fan Coil with switching, dimming, blinds V1.2 ⁽¹⁾			
RAM 713 Fan Coil with switching, dimming, blinds V1.2 ⁽²⁾			
⁽¹⁾ For devices before Sept. 2011			

⁽¹⁾ For devices before Sept. 2011 ⁽²⁾ For devices from Sept. 2011, with V1.3 marking.

The ETS database can be found on our website: http://www.theben.de

3.2 Parameter pages

Function	Description	
Settings	Device type and activation of external interface.	
Setpoint values	Setpoint value after download, values for night, frost mode etc.	
Setpoint values for	Dead zone and temperature increases conditional on the operating	
cooling	mode	
Operation	Rotary control and button functions.	
Actual value	Sensor type/function, calibration	
Control	System type, heating/ cooling parameters etc.	
Operating mode	Operating mode after reset, presence sensor	
Input E1E3	Function of connected contact, switches, dimmers, blinds.	

3.3 Communication objects

3.3.1 Object characteristics

RAM 713 FAN COIL features 12 communication objects.

Some objects can assume various functions depending on their configuration.

No	Function	Object name	Туре	Fla	<u> </u>	1	
140			турс	С	R	W	Т
0	Defining the setpoint temperature	<u>Basesetpointvalue</u>	2 bytes EIS5	✓	✓	✓	
0	offset	Manual setpoint offset	2 bytes EIS5	~	✓	~	
1	report current setpoint value	currents etpointvalue	2 bytes EIS5	~	~		~
2	Send actual value	Actual value	2 bytes EIS5	~	~		✓
2	Operating mode preset	Operating mode preset	1 byte KNX	~	~	~	
3	1 = night, 0 = standby	Night < - > Standby	1-bit EIS1	~	~	~	
4	Input for presence signal	Presence	1-bit EIS1	~	~	~	
4	1 = Comfort	Comfort	1-bit EIS1	~	~	~	
F	Input for <u>windowstatus</u>	Window position	1-bit EIS1	~	~	~	
5	1 = Frost protection	Frost / heat protection	1-bit EIS1	~	~	~	
6	report current operating mode	current operating mode	1 byte KNX DTP	~	~		~
7	Send current control variable	Heating control variable	1-byte EIS6	~			~
/	Send current control variable	<i>Heating and cooling control variable</i>	1-byte EIS6	~			✓
8	Send control variable	Cooling control variable	1-byte EIS6	~			~
				С	R	W	Т

No	Function	Object name	Tuno	Fla	ıgs		
•	Function	Object name	Туре	С	R	W	Τ
	Send switch telegram	Switching input 1		\checkmark	\checkmark	\checkmark	٧
	Send ON/OFF telegram	Dimmer E1 On/Off	1-bit	\checkmark	\checkmark	\checkmark	١
9	Send ON/OFF telegram	Dimmer E1/E2 On/Off	- EIS1	\checkmark	\checkmark	\checkmark	١
	Slats	Blinds E1 Step/Stop	L151	\checkmark	\checkmark		۱
	Slats	Blinds E1/E2 Step/Stop		\checkmark	\checkmark		۱
10	Send Up/Down telegram	Blinds E1 Up/Down	1-bit EIS1	~	✓		•
10	Send dim telegram	Dimmer El	4-bit EIS2	~	~		•
	Send switch telegram	Switching input 2	1-bit	\checkmark	\checkmark	\checkmark	•
11	Send ON/OFF telegram	Dimmer E2 On/Off	- EIS 1	\checkmark	✓	✓	•
	Slats	Blinds E2 Step/Stop		\checkmark	\checkmark		
	Blinds E2 Up/Down	Send Up/Down telegram	1-bit	\checkmark	✓		
12	Blinds E1/E2 Up/Down	Send Up/Down telegram	EIS 1	\checkmark	✓		
12	Dimmer E2	Send dim telegram	4-bit	\checkmark	✓		•
	Dimmer E1/E2	Send dim telegram	EIS2	\checkmark	\checkmark		•
	Send switch telegram	Switching input 3	1 h;+	\checkmark	\checkmark	\checkmark	
13	Send ON/OFF telegram	Dimmer E3 On/Off	– 1-bit – EIS1	\checkmark	\checkmark	\checkmark	
	Slats	Blinds E3 Step/Stop		\checkmark	\checkmark		
14	Blinds E2 Up/Down	Send Up/Down telegram	1-bit EIS1	~	✓		
14	Dimmer E3	Send dim telegram	4-bit EIS2	~	~		
15	Heating = 0, Cooling = 1	Switchover between heating and cooling	1-bit EIS1	~	~	~	
16	send/receive	Forced fan step	1-byte EIS 6	~	~	~	
17	0 = Auto / 1 = Forced	Fan forced/auto mode	1-bit EIS1	~	~	~	
	•	· · ·		С	R	W	'

Continuation:

Table 4: Communication flags

Flag	Name	Meaning
С	Communication	Object can communicate
R	Read	Object status can be viewed (ETS / display etc.)
W	Write	Object can receive
Т	Transmit	Object can transmit

Number of communication objects	18
Number of group addresses	34
Number of associations	35

3.3.2 Description of objects

• Object 0 "base setpoint value" / "manual setpoint value offset"

This object can assume 2 different functions.

Depending on the <u>configuration of the rotary control</u>, a new setpoint temperature can be set or the current setpoint temperature offset by a certain value

Table 6.

Parameters: Rotary control function	Object function
Manual offset for internal controller	Defining the setpoint temperature:
	The base setpoint value is first specified at start-up
disabled, but base setpoint value object	and stored in the base setpoint value object.
available	It can be reset at any time using object 0 (limited by
	minimum or maximum valid setpoint value).
	If the bus voltage fails, this object is backed up and
	the last value is restored when the bus voltage
	returns. The object can be described as required.
Base setpoint value for internal	Offset setpoint temperature:
controller	The object receives a temperature differential in EIS
	5 format. The desired room temperature (current
disabled, but manual offset object	setpoint value) can be adjusted from the base
available	setpoint value by this differential.
	The following applies in comfort mode (heating):
	current setpoint value (object 1) = base setpoint
	value (rotary control) + manual setpoint value offset
	(object 0)
	Values outside the configurable range (see <i>Max.</i>
	rotary control setpoint value offset) are limited to
	the highest or lowest value.
	Note:
	The offset always refers to the set base setpoint
	value and not to the <u>current setpoint value</u> .
Manual offset with report object, e.g.	Object 0 sends the rotary control offset to the fan
for FCA 1	coil actuator FCA 1.

• Object 1 "current setpoint value"

This object sends the current setpoint temperature as a EIS 5 telegram (2 bytes) to the bus. The send response can be set on the <u>setpoint values</u> parameter page.

• Object 2 "actual value"

This object sends the temperature currently being measured by the sensor (if sending via configuration is permitted)

• Object 3 "operating mode preset" / "night <-> standby"

The function of this object depends on the *objects for setting operating mode* parameter on the *operating mode* parameter page.

Table 7

Objects for determining the operating mode	Object function
new: Operating mode, presence,	1-byte object for selection of one of
window status	4 operating modes.
	1 = Comfort, 2 = Standby, 3 = Night,
	4 = Frost protection (heat protection)
	If another value is received $(0 \text{ or } >4)$ the comfort
	operating mode is activated.
	The details in brackets refer to cooling mode
old: Comfort, night, frost	With this setting, this object is a 1-bit object. Night
	or standby operating mode can be activated.
	0=Standby 1=Night

• Object 4 "presence" / "comfort"

The function of this object depends on the *objects for setting operating mode* parameter on the *operating mode* parameter page.

Table 8

Objects for determining the operating mode	Object function
<u>new: Operating mode, presence,</u> <u>window status</u>	Presence: The status of a presence indicator (e.g. sensor, motion detector) can be received via this object. 1 on this object activates the comfort operating mode.
old: Comfort, night, frost	Comfort: 1 on this object activates the comfort operating mode. This operating mode takes priority over night and standby modes. Comfort mode is deactivated by sending a 0 to the object.

• Object 5 "window position" / "frost/heat protection"

The function of this object depends on the *objects for setting operating mode* parameter on the *operating mode* parameter page.

Table 9

Objects for determining the operating	Object function
mode	
new: Operating mode, presence,	Window position:
window status	The status of a window contact can be received via
	this object.
	1 on this object activates the frost / heat protection
	operating mode.
old: Comfort, night, frost	Frost/heat protection:
	1 on this object activates the frost protection
	operating mode.
	The heat protection mode is activated during
	cooling.
	The frost/heat protection operating mode takes top
	priority.
	The frost/heat protection mode remains until it is
	cleared again by entering 0.

• Object 6 "current operating mode"

Transmits the current operating mode as a 1 byte value (see below: Coding of operating modes).

The send response can be set on the *operating mode* parameter page.

Value	Operating mode
1	Comfort
2	Standby
3	Night
4	Frost protection/heat
	protection

• Object 7 "heating control variable" / "heating and cooling control variable"

Sends the current heating control variable (0...100%) or heating or cooling with 2-pipe system. See *fan coil system used* parameter on the *control* parameter page.

• Object 8 "cooling control variable"

Sends the cooling control variable in EIS 6 format

• Objects 9, 10, 11, 12, 13, 14 for inputs *E1*, *E2* and *E3*

These objects are available when the interface on the *settings* parameter page is activated.

Their function is dependent on the *function of E1*, *function of E2* and *function of E3* parameters on the relevant parameter pages (input E1, E2 and E3).

A detailed description can be found in the appendix under the heading: <u>External interface</u>.

• Object 15 "switching between heating and cooling"

This object is used in <u>2-pipe heating/cooling systems</u> or if automatic switching between heating and cooling is not required. The cooling operation is forced via 1 and the heating operation via 0.

• Object 16 ''fan step in forced mode''

The fan step can be set manually by pressing the button on the device. This object then sends a percentage value that corresponds to the configured threshold values.

This function can be blocked or time limited or work permanently via a parameter.

See *operation* parameter page and *Fan forced mode* in the appendix.

• Object 17 ''fan forced/ auto ''

Sends when a <u>forced fan step</u> is selected using the button. This puts the fan coil actuator (FCA 1) in forced mode.

The forced mode is triggered via 0 or 1 depending on the application. \rightarrow See *switch fan between auto and forced* parameter on the *operating* parameter page. The object status is inverted when automatic mode is restored.

The following settings apply for the fan coil actuator FCA 1: Forced= 1, / Auto = 0

3.4 Parameters

The standard values are **in bold**.

3.4.1 Settings

Designation	Values	Meaning
Device type	RAM 713 Fan Coil	Fixed setting
Function of <u>external</u>	none	Determines whether external
<u>interface</u>	active	interface is being used.

3.4.2 Setpoint values

Designation	Values	Meaning
Basesetpoint value after downloading application	18 °C, 19 °C, 20 °C, 21 °C, 22 °C, 23 °C, 24 °C, 25 °C	Output setpoint value for temperature control.
Minimum valid base setpoint value	5°C, 6°C , 7°C, 8°C, 9°C, 10°C, 11°C, 12 °C, 13°C, 14°C, 15°C,16°C 17°C, 18°C, 19 °C, 20 °C	If a base setpoint value received by object 0 is lower than the set value, it will be limited to this value.
Maximum valid base setpoint value	20°C, 21°C, 22°C 23°C, 24 °C, 25°C 27 °C, 30 °C, 32 °C	If a base setpoint value received by object 0 is higher than the set value, it will be limited to this value.
<i>Reduction in standby mode</i> (<i>during heating</i>)	0.5 K, 1 K, 1.5 K 2 K , 2.5 K, 3 K 3.5 K, 4 K	Example: with a <u>base setpoint</u> value of 21°C in heating operation and a 2K reduction, RAM 713 FAN COIL controls at a setpoint value of $21 - 2 = 19°C$
Reduction in night mode (during heating)	3 K, 4 K, 5 K 6 K, 7 K, 8 K	By what value should the temperature be reduced in night mode?
Setpoint value for frost protection operation (during heating)	3 °C, 4 °C, 5 °C 6°C, 7 °C, 8 °C 9 °C, 10 °C	Preset temperature for frost protection operation in heating mode (Heat protection operation applies in cooling mode).
Setpoint value offset only applies	in comfort mode with comfort and standby mode with comfort, standby and night mode	In which operating modes is setpoint value offset effective? This setting covers offsetting via bus telegram as well as via the rotary control.

Designation	Values	Meaning
current setpoint value in		Feedback of current setpoint
comfort mode		value via the bus:
	Sends actual value (heating < > cooling)	The setpoint value actually being controlled is always sent
		(= <u>curreInt setpointvalue</u>). Example with basesetpointvalue 21°C and <u>dead zone</u> 2K: During heating and cooling, 21°C and base setpoint value + dead zone are sent respectively (21°C + 2K = 23°C)
cyclical transmission of current setpoint value	Transmits average value between heating and cooling	Same value in comfort operation mode during both heating and cooling operation, i.e.: Base setpoint value + half dead zone are transmitted to prevent occupants being inconvenienced. Example with base setpointvalue 21°C and deadzone 2K: Mean value= 21°+1K =22°C Although control takes place at 21°C or 23°C How often should the currently valid setpoint value
	not cyclical, only in the event of change	be sent? only send in the event of a change.
	every 2 min. every 3 min. every 5 min. every 10 min. every 15 min. every 20 min. every 30 min. every 45 min. every 60 min.	send cyclically

Continuation:

3.4.3 Cooling setpoint values

This page is only displayed only if the "*heating and cooling*" control function has been selected on the *settings* parameter page (*user-defined* control).

Table 1	13
---------	----

Designation	Values	Meaning
Dead zone between heating	1 K	Specifies the buffer zone
and cooling	2 K	between setpoint values in
	3 K	heating and cooling modes.
	4 K	The dead zone is expanded
	5 K	through hysteresis in
	6 K	switching (2 point) control.
		See glossary: <u>Dead zone</u>
Increase in standby mode	0.5 K, 1 K, 1.5 K	The temperature is increased
(during cooling)	2 K , 2.5 K, 3 K	in standby mode during
	3.5 K, 4 K	cooling operation
Increase in night mode	3 K, 4 K, 5 K	See increase in standby mode
(during cooling)	6 K, 7 K, 8 K	
Setpoint value for heat	42 °C (does not represent	Heat protection represents the
protection mode	<i>heat protection)</i>	maximum permitted
(during cooling)	29 °C, 30 °C, 31 °C	temperature for the controlled
	32 °C, 33 °C, 34 °C	room. It performs the same
	35 °C	function during cooling as the
		frost protection mode during
		heating, e.g. saves energy
		while prohibiting non-
		permitted temperatures

3.4.4 Operation

Designation	Values	Meaning
Function of the rotary control	Base setpoint value for internal controller (please using the following rotary control)	The rotary control is used for setting the <u>base setpoint</u> <u>value</u> . <u>Setpoint value offset</u> is possible via object 0 The rotary control with figures is plugged into the device.
	Manual offset for internal controller (please using the following rotary control)	The base setpoint value can be increased or reduced within the configured limits <u>via the rotary control</u> (see next table column). The +/- rotary control is plugged into the device.
	Disabled, but base setpoint value object available	The rotary control does not function (protection from undesired operation). The base setpoint value can be changed in the application or via <u>object 0</u> .
	Disabled, but manual offset object available	The rotary control does not function (protection from undesired operation). The base setpoint value is changed in the application and can be increased or decreased via object 0.
	Manual offset with report object, e.g. for FCA 1	Control takes place in fan coil actuator. The RAM 713 Fan Coil only sends (object 0) the entered setpoint value offset to the internal controller of the fan coil actuators (e.g. FCA 1 order no. 4920200)

Designation	Values	Meaning
Maximum setpoint value	+/- 1 K, +/- 2 K, +/- 3 K	Limits the possible setting
offset	+/- 4 K, +/- 5 K,	range for the setpoint value
on rotary control		offset function.
		Applicable for the received
		values above object 0
		(manual setpoint value offset).
LED control	always off	The LEDs are not used
	always active	The auto LED lights up
		during automatic mode.
		The fan steps <i>Off, 1, 2, 3</i> are
		displayed in forced mode.
	Time limit active	The fan steps <i>Off, 1, 2, 3</i> are
		displayed for 10 seconds after
		the button is pressed in forced
		mode.
Switch fans between auto and		Effect of forced object to
forced		adapt to the used fan coil
<i>J</i>		actuator.
		See appendix: Fan forced
		mode
	via object forced/auto, forced	Setting for the Theben Fan
	= 1	Coil Actuator FCA 1
		(Order no. 492 0 200)
		Forced mode is triggered
		by 1.
	via object auto/forced,	Forced mode is triggered
	forced = 0	by 0.

Designation	Values	Meaning	
Button function: Fan step	disabled	Button is deactivated	
	continuous selection	The fan step can be selected by pushing a button. The Fan Coil Actuator (FCA 1) is moved via a telegram from object 17 for an unlimited length of time to <u>forcedmode</u> .	
	select for 5 minutes select for 15 minutes	As above, except that forced mode ends when the selected time has expired.	
Threshold value for fan step 1	0,4%, is equivalent to value 1 0,8%, is equivalent to value 2 1,2%, is equivalent to value 3 1,6%, is equivalent to value 4	At what control variable should the first fan step switch on?	
	2 %, is equivalent to value 5 0 %, 10 %, 20 % 30 %, 40 %, 50 % 60 %, 70 %, 80 % 90 %, 100 %	The percentages are used in Fan Coil Aktor FCA 1 and in mostly every ventilation actuators.	
		The values 15 are intended for ventilation actuators with EIS 14 command.	
Threshold value for fan step 2 (greater than fan step 1 !!)	0,4%, is equivalent to value 1 0,8%, is equivalent to value 2 1,2%, is equivalent to value 3 1,6%, is equivalent to value 4	At what control variable should the first fan step change to the second fan step?	
	2 %, is equivalent to value 5 0 %, 10 %, 20 % 30 %, 40 %, 50 % 60 %, 70 %, 80 % 90 %, 100 %	Important: The value for step 2 must always be greater than the set value for step 1	
Threshold value for fan step 3 (higher than fan step 2 !!)	0,4%, is equivalent to value 1 0,8%, is equivalent to value 2 1,2%, is equivalent to value 3 1,6%, is equivalent to value 4	At what control variable should the second fan step change to the third fan step?	
	2 %, is equivalent to value 5 0 %, 10 %, 20 % 30 %, 40 %, 50 % 60 %, 70 %, 80 % 90 %, 100 %	Important: The value for step 3 must always be greater than the values for the steps 1 and 2.	

3.4.5 Actual value

Designation	Values	Meaning
Use which actual value		Is the room temperature
or		measured via the installed or
function of the external		via an external sensor?
sensor*		
	from internal sensor	The room temperature is
		measured in the device.
	Sensor for temperature	Fixed setting, if E3 is
	control (flush-mounted	configured for an external
	housing)	sensor.
	07	See the <i>function of E3</i>
		parameter on the <i>input</i>
		<i>E3</i> parameter page
Calibration value for internal	manual input -64 63	Positive or negative
sensor	Default value = 0	adjustment of measured
In 1/10 K (-64 63)		temperature in 1/10 K
		increments.
		Examples: a) RAM 713
		FAN COIL sends 20.3°C.
		A room temperature of
		21.0°C is measured using a
		calibrated thermometer. In
		order to increase the
		temperature of RAM 713
		FAN COIL to 21 °C, "7" (i.e.
		7 x 0.1K) must be entered.
		b) RAM 713 FAN COIL
		sends 21.3°C. 20.5°C is
		measured. In order to reduce
		the temperature of RAM 713
		FAN COIL to 20.5 °C, "-8"
		(i.e.
		-8 x 0.1K) must be entered.
Calibration value for external	manual input -64 63	See above, calibration value
sensor*	Default value = 0	for internal sensor

Designation	Values	Meaning
Transmission of the actual	not in the event of change	Is the current room
value	with change of 0.2 K	temperature to be transmitted?
or	with change of 0.3 K	If yes, from which minimum
the external actual values*	with change of 0.5 K	change should this be resent?
	with change of 0.7 K	This setting keeps the bus
	with change of 1 K	load as low as possible.
	with change of 1.5 K	
	with change of 2 K	
Cyclical transmission of	do not send cyclically	How often should the actual
actual value	every 2 min., every 3 min.	value be sent, regardless of
or	every 5 min., every 10 min.	the temperature changes?
cyclical transmission of	every 15 min., every 20 min.	
external actual values*	every 30 min., every 45 min.	
	every 60 min.	

Continuation:

*If an external sensor is connected to input E3. See *input E3* parameter page. The interface must also be configured as active.

See *settings* parameter page.

3.4.6 Control

Designation	Values	Meaning
Fan coil system used	2-pipe system	There is one single water
		circuit that is filled with
		cooling or heating medium
		according to the season.
	4-pipe system	The system consists of two
		separate water circuits for
		heating and cooling.
Switchover between heating	automatic	RAM 713 FAN COIL
and cooling*		automatically switches to
		cooling mode when the
		actual temperature is above
		the setpoint value.
	via object	The cooling mode can only
		be activated on the bus via
		object 15
		(1=Cooling).
		Cooling mode remains off
		for as long as this object is
		not set (=0).
		Always via an object \Rightarrow in
		the 2-pipe system.
Sets the control parameters	via system type	Standard application
	user-defined	Professional application:
	5	Self-configure P/PI control
Device type for heating	Radiator heating	PIcontrol with:
system		Integrated time = 90 minutes
		Bandwidth = 2.5 k
	Ean soil unit	Integrated time - 190
	Fan coil unit	Integrated time = 180 minutes
		Bandwidth = 4 k
Device type for cooling	Cooling ceiling	PI control with:
system		Integrated time = 90 minutes
		Bandwidth = 2.5 k
	Fan coil unit	Integrated time $= 180$
		minutes
		Bandwidth = 4 k

* Only available for 4-pipe system.

In the 2-pipe system, switching is always performed via object 15.

** Change since last transmission

Continuation			
Designation	Values	Meaning	
Transmission of control	with change of 1 %	After what percentage	
variable	with change of 2 %	change ^{**} in the control	
Heating/cooling	with change of 3 %	variable is the new value to be	
	with change of 5 %	transmitted?	
	with change of 7 %	Small values increase both the	
	with change of 10 %	control accuracy and bus load.	
	with change of 15 %		
cyclical transmission of	not cyclical, only in the event	How often is the current	
heating/cooling control	of change	heating control variable to be	
variables	every 2 min., every 3 min.	sent (regardless of changes)?	
	every 5 min., every 10 min.		
	every 15 min., every 20 min.		
	every 30 min., every 45 min.		
	every 60 min.,		
	User-defined control parameters	3	
Proportional band of heating	1 K, 1.5 K, 2 K , 2.5 K, 3 K	Professional setting to adapt	
control	3.5 K, 4 K, 4.5 K	the control response to the	
	5 K, 5.5 K, 6 K	room.	
	6.5 K, 7 K, 7.5 K	Small values cause large	
	8 K, 8.5 K	changes in control variables,	
		larger values cause finer	
		control variable adjustment.	
		See appendix: <u>Temperature</u>	
		control	
Integrated time of the heating	15 min., 30 min., 45 min.	The integrated time	
control	60 min., 75 min., 90 min.	determines the reaction time	
	105 min., 120 min., 135 min.	of the control.	
	150 min ., 165 min., 180 min.		
	195 min., 210 min., 225 min.	It lays down the increase that	
		the output control variable is	
		raised by, in addition to the P	
		share. The I- share remains	
		active for as long as there is a	
		control deviation. The I share	
		is added to the P share.	
		See appendix: <u>Response of PI</u>	
		control	

Continuation

Designation	Values	Meaning
Proportional band of the	1 K, 1.5 K, 2 K, 2.5 K, 3 K	Professional setting for
cooling control	3.5 K, 4 K , 4.5 K	adapting control response to
	5 K, 5.5 K, 6 K	the room.
	6.5 K, 7 K, 7.5 K	Large values cause finer
	8 K, 8.5 K	changes to the actuating value
		with the same control
		deviation and more precise
		control than smaller values.
Integrated time of the cooling	15 min., 30 min., 45 min.,	The integrated time
control	60 min, 75 min, 90 min ,	determines the reaction time
	105 min, 120 min, 135 min,	of the control.
	150 min, 165 min, 180 min,	
	195 min, 210 min, 225 min	It lays down the increase that
		the output control variable is
		raised by, in addition to the P
		share. The I- share remains
		active for as long as there is a
		control deviation. The I share
		is added to the P share.
		See appendix: <u>Response of</u>
		the PI control

Continuation

3.4.7 Operating mode

Designation	Values	Meaning	
<i>Objects for determining the operating mode</i>	<u>new: Operating mode,</u> presence, window status old: Comfort, night, frost	RAM 713 FAN COIL can switch the operating mode depending on the window and presence contacts. Traditional setting without	
	(not recommended)	window and presence status.	
Operating mode after reset	Frost protection Night-time temperature reduction Standby Comfort	Operating mode after start-up or reprogramming	
<i>Type of <u>presencesensor</u></i> * (to object 4)		The presence sensor activates the comfort operating mode	
	Presence detector	Comfort operating mode as long as the presence object is set.	
	Presence keys	 If the operating mode object (object 3) is called up again after setting the presence object, the new operating mode will be accepted and the state of the presence object ignored. If the presence object is set during night / frost operation, it is reset after the configured comfort extension finishes (see below). The presence object is not reported on the bus. 	

Designation	Values	Meaning
Comfort extension by	none	-
presence keys in night mode		
	30 minutes.	Party switching:
	1 hour	RAM 713 FAN COIL can
	1.5 hours	switch again by the presence
	2 hours	object from night / frost mode
	2.5 hours	to comfort mode for a limited
	3 hours	time.
	3.5 hours	
		The time limit is omitted if
		the device was previously in
		standby mode.
		Comfort operation is only
		cleared with the next manual
		or bus controlled change of
		operating mode.
cyclical transmission of	not cyclical, only in the event	How often should the current
current operating mode	of change	operating mode be sent?
	every 2 min., every 3 min.	
	every 5 min., every 10 min.	
	every 15 min., every 20 min.	
	every 30 min., every 45 min.	
	every 60 min.	

* See also appendix: <u>Setting the presence object with setpoint value offset</u> Continuation

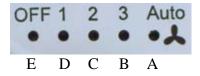
3.4.8 Inputs E1, E2, E3

Designation	Values	Meaning		
	Function of E1, E2 or. E3: Switch	1, E2 or. E3: Switching		
Reaction to closing the	Off	Send switch-off command		
contact	On	Send switch-on command		
	By	Reverse last switching		
		command		
	none	Do not send		
Reaction to opening the	Off	See above		
contact	On			
	By			
	none			
send cyclically	not cyclical, only in the event	At what intervals should the		
	of change	switching status of the		
	every 2 min., every 3 min.	switching object be sent?		
	every 45 min, every 60 min			
	function of $E1$ (+ $E2$): Blinds up (d			
Function of E1	Blinds up	Short button push:		
		Step/Stop or turn slats		
		(object 9)		
		Long button push:		
		Up telegram (object 12)		
Function of E2	Blinds down	Short button push:		
		Step/Stop or turn slats		
		(object 9)		
		Long button push:		
		Down telegram (object 12)		
	of E1, E2, E3: Blinds single-surface			
Function of E1	Blinds single-surface	Short button push:		
(or E2, E3)	operation	Step/Stop or turn slats		
		The sent value is opposite to		
		the telegram of the last		
		directional command		
		Long button push:		
		Up / Down		
		Pushing the button again		
		reverses the direction of run.		
		Always starts with Down		
		after bus failure or reset.		
		anter bus famule of feset.		

Designation	Values	Meaning
Function of E1 (+ E2): Dim brighter / darker		
Function of E1	Dim brighter	Short button push:
		On / Off (object 9)
		Long button push:
		Brighter darker dimming
		(object 12)
Function of E2	Dim darker	Short button push:
		On / Off (object 9)
		Long button push:
		Darker dimming (object 12)
Function of I	E1, E2, E3: Dimming single-surf	face operation
Function of E1	Dimming single-surface	Short button push:
(or E2, E3)	operation	On/Off.
		Switching status is reversed
		with each push of a button.
		Long button push:
		Brighter / darker.
		Dimming direction is reversed
		with each push of a button.
		Always starts with Dim up
		after bus failure or reset.
		A stop telegram is sent when
		releasing after long time
		operation.
	trameter for the blinds and dimn	
Long button push starting at	300 ms	Limit value in differentiating
	400 ms	between a short and long
	500 ms	button push (in 1/1000s)
	600 ms	2 different functions can be
	700 ms	performed depending on
	800 ms	whether a button is pressed
	900 ms	briefly or held down.
	1000 ms	
	unction of E3: Temperature sens	
See function of external sensor	on the <u>actualvalue</u> parameter pa	age

Continuation:

See appendix: External interface


4 Start-up

4.1 Actuators to control heating and cooling

There are several possibilities available for controlling the heating and cooling equipment.

Function	Actuator	Order
		no.
Heating and cooling with fan coil	FCA 1	4920200
Heating with radiators	HMG 4	4910210
Cooling with cooling ceiling	HME 4	4910211
	HMT 6	4900273
	HMT 12	4900274

4.2 Control variable display

.

If the button (top right) is pressed for longer than 2 seconds, the current control variable is displayed on LEDs A, B, C, D and LED E shows whether heating (red) or cooling (blue) mode is active.

LED	Control
	variable
no LED	0 %
LED A (auto)	1 - 25%
LED B (step 3)	26 - 50%
LED C (step 2)	51 - 75%
LED D (step 1)	76 - 100%

5 Typical applications:

5.1 Base configuration (4-pipe system): Heating and cooling with RAM 713 FC as external control for FCA 1

RAM 713 FC controls the Fan Coil Actuator FCA 1.

5.1.1 Devices:

- RAM 713 FC
- FCA 1

5.1.2 Overview

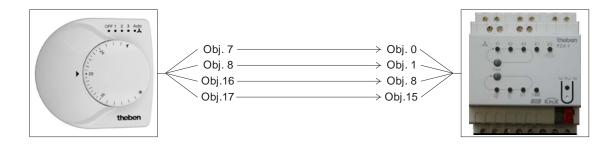


Figure 1

5.1.3 Objects and links

Table 17: Links

No.	RAM 713 FC	No.	FCA 1	Comments
190.	Object name	INO.	Object name	Comments
7	Heating control	0	Heating control	RAM 713 S sends the heating
/	variable	0	variable	and cooling control variables
8	Cooling control	1	Cooling control	to FCA 1
0	variable	1	variable	10 TCA 1
16	Forced fan step	8	Forced fan step	% value for forced mode
10	i orecujan step	Ŭ	1 or coa jair step	
17	Fan forced/auto mode	15	Fan	Trigger for forced mode
17	1 un jorceu/unio moue	15	Forced = 1 / Auto = 0	

5.1.4 Important parameter settings

Standard or user-defined parameter settings apply for unlisted parameters.

Table 18: RAM 713 FC

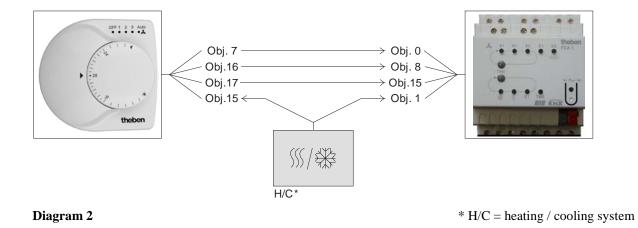
Parameter page	Parameters	Setting
Settings	Device type	RAM 713 Fan Coil
Control	Fan coil system used	4-pipe system
Operating mode	Objects for determining the	old: Comfort, night, frost
	operating mode	

Table 19: FCA 1

Parameter page	Parameters	Setting
General	Supported function	Heating and cooling
	System type	4-pipe system
	Type of controller used	remote controller
Heating valve	Type of valve	2-point
Cooling valve	Type of valve	2-point

5.2 Base configuration (2-pipe system): Heating and cooling with RAM 713 FC as external control for FCA 1

5.2.1 Special features


The following points must be observed for use in a 2-pipe heating/cooling system:

- In the 2-pipe system, heating and cooling mediums (depending on the season) are lead through the same lines and controlled via the same valve. The cooling and heating control variables are sent to a single, common object (object 7).
- The control variables must not be sent cyclically
- The switchover between heating and cooling mediums is performed by the system and must therefore be transmitted to the room thermostat. The heating/cooling system must send a 0 for heating mode and a 1 for cooling mode to RAM 713 FAN COIL object 15 *"switching between heating and cooling"*.

5.2.2 Devices:

- RAM 713 FC
- FCA 1

5.2.3 Overview

5.2.4 Objects and links

Table 20: Links

No.	RAM 713 FC	No.	FCA 1	Comments
INO.	Object name	_ 1NO.	Object name	Comments
7	Heating and cooling control variable	0	Heating/cooling control variable	FCA receives the heating and cooling control variables from RAM 713 FC
15	Switchover between heating and cooling	1	Switchover between heating and cooling	Telegram is produced by the heating/cooling system
16	Forced fan step	8	Forced fan step	% value for forced mode
17	Fan forced/auto mode	15	Fan forced/auto mode	Trigger for forced mode

5.2.5 Important parameter settings

Standard or user-defined parameter settings apply for unlisted parameters.

5.2.5.1 FCA 1

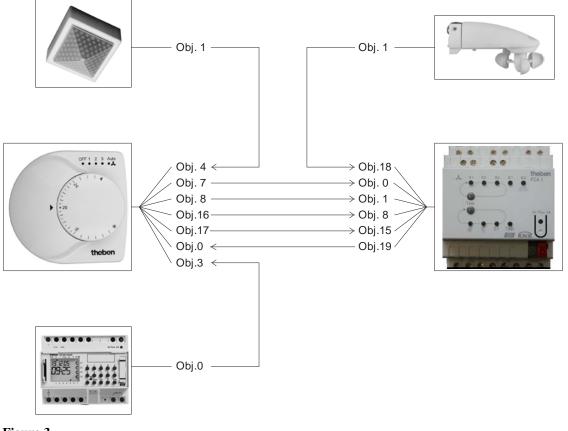
Table 21

Parameter page	Parameters	Setting
General	Supported function	Heating and cooling
	System type	2-pipe system
	Type of controller used	remote controller
Heating/cooling valve	Type of valve	2-point

5.2.5.2 RAM 713 FC

Parameter page	Parameters	Setting
Settings	Device type	RAM 713 Fan Coil
Control	Fan coil system used	2-pipe system
Operating mode	Objects for determining the	new: Operating mode,
	operating mode	presence, window status

5.3 Typical application (4-pipe system):


5.3.1 Function:

- A heating and cooling system is installed in an office building with separate circuits for hot and cold water.
- The room temperature in the individual offices is controlled according to the time of day and level of occupation.
- On hot summer days less cooling is to be used to save energy. This improves the level of comfort for the office users as this prevents too extreme a temperature difference when leaving the office.

5.3.2 Devices:

- RAM 713 FC
- FCA 1
- TR 644 S
- Presence detector
- Weather station

5.3.3 Overview

Figure 3

5.3.4 Implementation:

A RAM 713 FC and an FCA 1 are used for room temperature control.

The RAM 713 calculates the setpoint value based on the selected operating mode and a setpoint adjustment by the room occupants.

The operating mode is specified by a TR 644 EIB time switch.

On work days, the time switch moves to standby, just before work starts, and to night mode at the end of the working day.

In addition, one channel on the time switch is connected to the operating mode object of the controller.

A presence detector allows the activation of comfort mode if the office is actually occupied. In addition, the presence detector is connected to the presence object of the controller.

The room thermostat is connected to the FCA 1 via the *heating control variable* and *cooling control variable* objects.

The FCA 1 controls the valves and the fan in the *auto* position via these objects.

Manual setting of fan steps requires the connection of objects 8 and 15 of FCA 1 with objects 16 and 17 of the RAM 713 FC.

The outside temperature is sent from a weather station to the FCA 1 (object 18) for adjustment of the setpoint value on hot summer days.

This determines, depending on the configuration, the setpoint adjustment transmitted to the room thermostat.

Objects 19 (FCA 1) and object 0 (RAM 713 S) are connected with each other for this purpose.

Objects and links

No.	RAM 713 FC	No.	FCA 1	Comments	
INO.	Object name	INO.	Object name	Comments	
7	Heating control variable	0	Heating control variable	FCA receives the actuating value heating from RAM 713 S	
8	Cooling control variable	1	Cooling control variable	FCA receives the actuating value cooling from RAM 713 S	
16	Forced fan step	8	Forced fan step	% value for forced mode	
17	Fan forced/auto mode	15	Fan forced/auto mode	enables the manual selection of fan step on the RAM 713 FC	
0	Manual setpoint offset	19	Adjust setpoint	For setpoint adjustment in cooling operating mode	

 Table 23: Temperature controller links with the fan coil actuator.

Table 24: Weather station links with the fan coil actuator.

No.	Weather station Object name	No.	FCA 1 Object name	Comments
1	Temperature value	18	Outside temperature	Outdoor temperature for setpoint adjustment

 Table 25: Presence detector links with room temperature controller.

No.	ECO-IR	No.	RAM 713 FC	Comments
	Object name		Object name	Comments
1	HVAC switch output	4	Presence	Presence signal for switch to comfort mode

Table 26: Timer links with room temperature controller.

No.	TR 644 S EIB	No.	RAM 713 FC	Comments		
INO.	Object name		Object name	Comments		
				Switches to HVAC operating		
0	Channel 1 - valuator	3	Operating mode preset	mode* depending on the time		
				of day.		
* HV	AC operating modes: 1 =	= Comf	fort			
2 = Standby						
3 = Night						
4 = Frost / heat protection						

5.3.5 Important parameter settings

Standard or user-defined parameter settings apply for unlisted parameters.

Table 27: RAM 713 FC

Parameter page	Parameters	Setting
Settings	Device type	RAM 713 Fan Coil
Operation	Function of the rotary control	Manual adjustment with report
		object
Control	Fan coil system used	4-pipe system
	Switchover between heating and	automatic
	cooling	
Operating mode	Objects for determining the	new: Operating mode, presence,
	operating mode	window status

Table 28: FCA 1

Parameter page	Parameters	Setting
General	Supported function	Heating and cooling
	Heating system	Fan coil
	Cooling system	Fan coil
	System type	4-pipe system
	Type of controller used	remote controller
Heating valve	Type of valve	2-point
Cooling valve	Type of valve	2-point
Setpoint adjustment	Setpoint adjustment from	25 °C
	Adjustment	1 K per1 K outdoor temperature
	Format of adjustment value	relative

Table 29: Weather station

Parameter page	Parameters	Setting
Measured values	Transmit temperature in the event	1.0°C
	of change of	

Table 30: TR 644 S EIB time switch

Parameter page	Parameters	Setting
Channel 1	Object type	Valuator
	Value when clock is switched on	2*
	Value when clock is switched off	3**

* Standby

** Night

Table 31: Presence detector (e.g. Eco-IR 180, 360 or Compact Office*)

Parameter page	Parameters	Setting
General information	Normal or test operating mode	Normal operation
	HVAC switch output*	Active
HVAC switch output	Response at start/end of HVAC	Transmit On and Off telegram
	requirement	

* Presence output

5.4 Switching, blinds control a dimming with devices in the MiX range, in addition to control operating mode

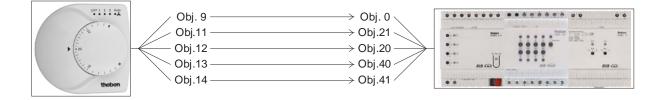
In addition to its role as a temperature control (see above) the RAM 713 FAN COIL can control a switching actuator, blinds and dimmer via an external interface.

In our example, all three possibilities are mixed and the telegrams sent to a combination of 3 suitable actuator types in the MiX range.

This is just one of the many possible applications of the RAM 713 Fan Coil inputs in combination with devices in the MiX range.

In the following case one channel per MiX module is occupied while the remaining channels are available for other sensors in the system (EIB button, other RAM 713 devices etc.).

 Table 32: Use of RAM 713 inputs


Input	Use	Affects
E1	switches or buttons for the switching channel	RMG 4 S
E2	Button for blinds control (single-surface operation)	JME 4 S
E3*	Button for dimmer control (single-surface operation)	DME 2

* E3 can only be used if an external temperature sensor is required.

5.4.1 Devices:

- RAM 713 FC
- RMG 4 S
- JME 4 S
- DME 2

5.4.2 Overview

Figure 4

5.4.3 Objects and links

Table 33: Links

No.	RAM 713 FC Object name	No.	MiX combination Object name		Comments		
9	Switching input 1	0	Switching On/Off GM RMG4 Channel 1	E1	Send switch-on or switch-off telegrams		
11	Blinds E2 Step/Stop	21	Step / Stop EM1 JME4 S C1	E2	with each short button push: Stop or turn slats		
12	Blinds E2 Up/Down	20	Up / Down EM1 JME4 S C1	Щ	with a long button push: Move blinds <i>Up</i> or <i>Down</i>		
13	Dimmer E3 On/Off	40	Switching On/Off EM2 DME2 Channel 1	3	with each short button push: Switch dimmer on/off		
14	Dimmer E3	41	Brighter / darker EM2 DME2 Channel 1	E3	with a long button push: Dimmer turns light up/down		

5.4.4 Important parameter settings

Standard or user-defined parameter settings apply for unlisted parameters. A button or switch can be connected to one switch input. Adjustment is made via the *Reaction to closing* or *Opening contact* parameters.

Table	34:	RAM	7131	FC
	• • •			~ ~

Parameter page	Parameters	Setting
Settings	Device type	RAM 713 Fan Coil
	Function of the external	active
	interface	
Input E1	Function of E1	Switching
	Reaction to closing	With switch: On
	the contact	With button: <i>By</i>
	Reaction to opening	With switch: Off
	the contact	With button: <i>none</i>
Input E2	Function of E2	Blinds single-surface
		operation
Input E3	Function of E3	Dimming single-surface
		operation

Table 35: MiX combination	- RMG 4 S with	blinds and dimmer	upgrades.
---------------------------	----------------	-------------------	-----------

Parameter page	Parameters	Setting
General	Number of upgrade modules	2 upgrade modules
	Type of 1st upgrade module	EM1 is a JME4 S
	EM1	
	Type of 2nd upgrade module	EM2 is a DME 2
	EM2	
RMG4 Channel 1	Function	Switching On/Off
EM1 JME4 S C1	Type of curtain	Blinds
EM2 DME2 channel 1 S1	Switching on/off with a 4-bit	по
	dim telegram	

5.4.5 Frost protection via window contact

A window contact should cause automatic switching to frost protection mode (heat protection mode).

A contact is mounted on the window. This is connected directly to an input of the external interface, E1 for instance.

The device is programmed as follows:

Operating mode parameter page

Parameters	Value
Objects for determining the operating mode	new: Operating mode, presence, window
	status

The corresponding switch object (object 9 for E1) is linked with object 5 (window position) via the group address.

RAM 713 FAN COIL will recognise when the window opens and automatically switch to frost protection mode (heat protection mode). When the window is closed the previously set operating mode will be restored. See also <u>new Operating modes</u>.

6 Appendix

6.1 Fan forced mode

This function allows the fan step to be set manually, either by using the button on the device or via the bus.

It can be time-controlled or permanently activated or blocked on the *operation* parameter page.

Table 36: Button operation

Button push	Function	LED
1	Fan off	OFF
2	Fan step 1	1
3	Fan step 2	2
4	Fan step 3	3
5	Auto	Auto

Important: Depending on the actuator used, either 1 or 0 is needed to trigger compulsory operation.

This response is adjustable, see *switch fan between auto and forced* parameter on the *operating* parameter page.

Send response in forced mode with fan coil actuator FCA 1 (forced = 1):

Object 17 sends 1 to the fan coil actuator thereby triggering forced mode.

Object 16 sends the control variable for the selected fan step in accordance with the set threshold value.

This control variable (in accordance with the set threshold value) is transferred to the fan coil actuator as a fan step between 0 and 3.

Important: the sent forced control variable should always be higher than the threshold setting of the fan coil actuator.

платри.		
Threshold value	Set values for	Recommended values
for	RAM 713 Fan Coil	for FCA 1
Fan step		
1	20 %	10 %
2	50 %	40 %
3	80 %	70 %

Example:

If fan step 2 is selected using the button, object 16 sends control variable 50 %.

As the threshold value for step 2 in the fan coil actuator is set at 40 %, the received control variable of 50 % is clearly allocated to fan step 2 and accepted by the fan.

Forced mode can also be triggered by telegrams from other bus users.

Parameters: Switch fans between auto and forced	Response
via object forced/auto, forced = 1	If object 17 receives 1, RAM 713 FC switches to forced mode and accepts the fan step (percentage value) set by object 16. Forced mode is ended by 0 on object 17 or via the button on the device.
via object auto/forced, forced = 0	When a percentage value is received on object 16, RAM 713 FC immediately switches to forced mode and object 17 is automatically reset to 0. Forced mode is ended by 1 on object 17 or via the button on the device.

Table 37: Response with forced mode= 1 and forced mode= 0	Table 37: Response	with forced mode= 1	and forced mode= 0
---	--------------------	---------------------	--------------------

6.2 Determining the current operating mode

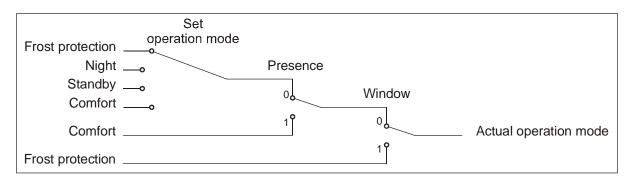
The <u>current setpointvalue</u> can be adapted to to relevant requirements by selecting the operating mode.

The operating mode can be specified by objects 3..5. There are two methods available:

6.2.1 New operating modes

If new is selected in the *determining operating mode* parameter on the operating mode parameter page, the current operating mode can be defined as follows:

Table 38


Operating mode	Presence	Window status	current operating
preset	Object 4	Object 5	mode
Object 3			(Object 6)
any	any	1	Frost / heat protection
any	1	0	Comfort
Comfort	0	0	Comfort
Standby	0	0	Standby
Night	0	0	Night
Frost / heat protection	0	0	Frost / heat protection

Typical application:

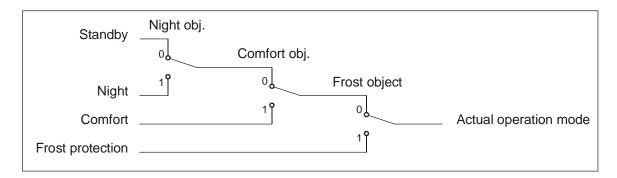
In the mornings, object 3 activates *standby* or *comfort* modes, and *night* mode in the evenings via a time switch (e.g. TR 648).

During holiday periods, object 3 also selects frost / heat protection via another channel on the timer.

Object 4 is connected to a presence detector. If a presence is detected RAM 713 FAN COIL in the comfort operating mode (see table). Object 5 is connected to a window contact via the bus (binary inputs). As soon as a window is opened, RAM 713 FAN COIL switches to frost protection mode.

6.2.2 Old operating modes

If old is selected in the *determining operating mode* parameter on the operating mode parameter page, the current operating mode can be defined as follows:


Table 39

Night	Comfort	Object 5 frost/heat	current operating
Object 3	Object 4	protection	mode
			Object 6
any	any	1	Frost / heat protection
any	1	0	Comfort
Standby	0	0	Standby
Night	0	0	Night

Typical application: In the mornings standby operating mode is activated by a timer switch via <u>object 3</u> and in the evenings the *night* mode.

In holiday periods, frost/heat protection is selected on another channel via <u>object 5</u>. <u>Object 4</u> (comfort) is connected to a presence detector. If a presence is detected, RAM 713 FAN COIL switches to comfort mode (see table).

Object 5 is connected to a window contact. As soon as a window is opened, RAM 713 FAN COIL switches to frost protection mode.

The old method has two advantages over the new method:

1. To switch from comfort to night operating mode, 2 telegrams (2 timer channels if necessary) are required.

Object 4 must be set to "0" and object 3 to "1".

2. If the window is opened and then closed again during periods when "Frost / heat protection" is selected via the timer switch, the "Frost / heat protection" mode is cleared.

6.2.3 Determining the setpoint value

6.2.3.1 Calculating the setpoint value in heating operation

See also: <u>Base setpointvalue and current setpoint value</u>

Operating mode	Current setpoint value
Comfort	Basesetlpoint value +/- setpoint value offset
Standby	Base setpoint value +/- setpoint value offset – reduction in standby mode
Night	Base setpoint value +/- setpoint value offset – reduction in night mode
Frost / heat	configured setpoint for frost protection mode
protection	

Table 40: Current setpoint value during heating

Example:

Heating in comfort mode.

Parameter page	Parameters	Setting
Setpoint values	Base setpoint after reset	21 °C
	Reduction in standby	2 K
	operating mode	
	(during heating)	
Operation	Maximum setpoint offset on	+/- 2 K
	the rotary control	

The setpoint value was previously increased by 1 K using the control variable.

Calculation:

Current setpoint value = base setpoint + setpoint offset = $21^{\circ}C + 1K$ = $22^{\circ}C$

If operation is switched to standby mode, the <u>current setpoint value</u> is calculated as follows:

Current setpoint = base setpoint + setpoint offset – reduction in standby mode = $21^{\circ}C + 1K - 2K$ = $20^{\circ}C$

6.2.3.2 Calculating the setpoint value in cooling operation

Table 41: Current setpoint value during cooling

Operating	Current setpoint value
mode	
Comfort	Baseset point value + setpoint value offset + dead zone
Standby	Base setpoint value + setpoint value offset + dead zone + increase in standby
Standby	mode
Night	Base setpoint value + setpoint value offset + dead zone + increase in night
	mode
Frost / heat	configured setpoint value for heat protection mode
protection	

Example:

Cooling in comfort mode.

The room temperature is too high and RAM 713 FAN COIL has switched to cooling operation

Parameter page	Parameters	Setting
Setpoint values	Base setpoint after reset	21 °C
	Dead zone between heating	2 K
Cooling setpoint values	and cooling	
Cooling selpoint values	Increase in standby mode	2 K
	(during cooling)	
Operation	Maximum setpoint offset on	+/- 2 K
	the rotary control	

The setpoint value was previously lowered by 1 K using the rotary control.

Calculation:

Current setpoint value = base setpoint value + setpoint value offset + dead zone = $21^{\circ}C - 1K + 2K$ = $22^{\circ}C$

Changing to standby mode causes a further increase in the setpoint value (energy saving) and gives rise to the following setpoint value.

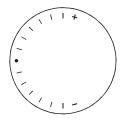
Setpoint value = base setpoint value + setpoint value offset + dead zone + increase in standby mode

 $= 21^{\circ}C - 1K + 2K + 2K$ $= 24^{\circ}C$

6.3 Setpoint offset

The current setpoint value can be adjusted in two ways with the RAM 713 FAN COIL.

- in increments using the rotary control (see *Operation*, *rotary control function*parameter page)
- via object 0 "Manual setpoint value offset"


The differential between the setpoint value offset and the base setpoint value is sent by object 1 at each change (e.g. -1.00).

The offset limits are specified on the *Operation* parameter page by the *maximum setpoint* value offset on the rotary control parameter and apply to both types of setpoint value offset.

6.3.1 Setpoint temperature offset using the rotary control

This option is available when the rotary control has been enabled on the *Operation* parameter page:

The +/- rotary control is plugged onto the device for this function (see illustration).

In the central position on the rotary control, the setpoint value offset is zero. Should the rotary control be turned to the left (+) until it can be turned no further, the setpoint value will be increased by the programmed maximum setpoint offset.

The offset can be very finely adjusted using the rotary control's notch. The change in temperature per scale line depends on the maximum setpoint value offset which has been programmed.

Table 42

Maximum setpoint value offset on the rotary control	Kelvin / °C per scale line
+/- 1 K (i.e. +/-1°C)	1/6
+/- 2 K	1/3
+/- 3 K	1/2

6.3.2 Setpoint temperature offset via Object 0

This option is available only when the following settings have been selected on the *Operation* parameter page:

Parameter page	Parameters	Setting
Operation	Function of the rotary	Base setpoint value for
	control	internal controller
		or
		disabled, but manual offset
		object available

In this case, the setpoint value is changed by sending the desired offset to object 0. This involves the differential (may be preceded by a minus sign) being sent to object 0 in EIS5 format.

The offset always refers to the <u>base setpointvalue</u> (as programmed or specified by the rotary control) and not to the current setpoint value.

Example Base setpoint value of 21°C:

If a value of 2.00 is sent to object 0, the new setpoint value is calculated as follows: $21^{\circ}C + 2.00K = 23.00^{\circ}C$.

To then bring the setpoint value to 22° C, the differential is resent to the programmed base setpoint value (here 21° C), in this case 1.00K (21° C+1.00K= 22° C)

6.3.3 Setting the presence object with setpoint value offset

The RAM 713 Fan Coil allows the setting of the presence object just by increasing the setpoint value on the settings control. This switches the device to comfort mode and brings the room temperature to a comfortable level.

This function can be activated by the Set presence object \rightarrow by setpoint value increase on rotary control parameter on the Operation parameter page

This does not produce a reset through reduction in the setpoint temperature.

Presence sensor at object 4	Presence object
Presence detector	is reset by the presence detector.
	If there is no available detector, the presence object (object 4)
	can be reset every 2 hours during the night via a time switch.
Presence keys	is reset in night mode after a timer* has expired or via a time
	switch (see above).

Table 43: Leave comfort mode.

* *Comfort extension by presence keys in night mode* parameter on the *Operating mode*parameter page.

6.4 External interface

The external interface is activated on the *Settings* parameter page. It consists of the three inputs E1, E2 and E3.

E1 and E2 are pure binary inputs, and E3 can be used as both a binary and an analogue input for an external temperature sensor.

All 3 inputs are connected in the base via the connection terminals.

The following functions can be performed:

- Switching (1 switch or button)
- Blinds Up/Down (with 2 keys on E1 + E2)
- Blinds single-surface operation (with 1 button)
- Dimmer brighter/darker (with 2 keys on E1 + E2)
- Dimmer single-surface operation (with 1 key)
- Temperature (only E3)

If the blinds and dimmer functions are performed on 2 keys, E1 and E2 are automatically connected with each other and have a common effect on objects 9, 10 und 12.

6.4.1 Overview: Function of Objects 9..14.

Table 44: Function of E1

Eurotion of El	Function		
Function of E1	Object 9	Object 10	Object 12
Switching	Sends the switching status of the E1 input	Not used	Not used
Blinds UP Note: E2 is automatically set to Blinds DOWN.	Sends commands for Step/Stop in upwards direction-or slat positioning	Not used	Sends Up command to blinds
Blinds single-surface operation	Sends commands for Step/Stop or slat positioning	Sends Up/down command to blinds	Not used
<i>Dim brighter</i> Note: E2 is automatically	Sends On/Off commands to the dimmer	Not used	Sends 4-bit dim commands
set to Dim darker			
Dimmer single- surface operation	Sends On/Off commands to the dimmer	Sends 4-bit dim commands	Not used

Table 45: Function of E2

Euroption of F2	Function		
Function of E2	Object 11 Object 12		
Switching	Sends the switching status of	Not used	
	the E2 input		
Blinds single-surface	Sends commands for	Sends Up/down command to	
operation	Step/Stop or slat positioning	blinds	
Dimming single-surface	Sends On/Off commands to	Sends	
operation	the dimmer	4-bit dim commands	
Blinds down	Fixed setting if E1 is configured to <i>Blinds up</i> .		
	See previous table: Function of E1		
Dim darker	Fixed setting if E1 is configured to <i>Dim brighter</i>		
	See previous table: Function of E1		

Table 46: Function of E3

Eurotion of E2	Function		
Function of E3	Object 13	Object 14	
Switching	Sends the switching status of	Not used	
	the E2 input		
Blinds single-surface	Sends commands for	Sends Up/down command to	
operation	Step/Stop or slat positioning	blinds	
Dimming single-surface	Sends On/Off commands to	Sends	
operation	the dimmer	4-bit dim commands	
Overview	Not used	Not used	

*The measure actual value is sent from object 2.

6.4.2 E1...E3 as switching inputs

If an input is programmed to be a switching input, switches can also be used as keys. The status of the corresponding object (objects 9...11) is switched to the relevant <u>Configuration</u>.

Table 47: ON/OFF by switch

Parameter page	Parameters	Setting
Inputs E1(E2, E3)	Reaction to closing the contact	On
	Reaction to opening the contact	Off

Table 48: ON / OFF by button (cf. surge relay)

Parameter page	Parameters	Setting
Inputs E1(E2, E3)	Reaction to closing the contact	By
	Reaction to opening the contact	none

See above Overview: Function of objects 9.. 14.

6.4.3 E1...E2 Blinds Up / Down

2 keys are connected to control blinds 9E1 + E2).

In this case the objects 9 (Step/Stop) and 10 (Up/Down) are linked with an EIB blinds actuator (JMG 4, RMG 8, JMG 4 24 VDC).

In both inputs there is a differentiation between short time and long time operation. The time difference between a long and a short button push is set on the *input E1* parameter page. A short keystroke sends the relevant telegram (ON or OFF) to the slat object (object 9), holding the key down sends a telegram to the drive object (object 12).

Only one of the two objects is operated at a time.

If one button is held down, the other will not operate.

Table 49

Button push	E1	E2
long	Up telegram (0)	Down telegram (1)
(Affects		
object 12)		
short	Step/Stop telegram in upward	Step/Stop telegram in
(Affects	direction (0)*	downward direction (1)*
object 9)		× /

*The choice between Step and Stop occurs in the blinds actuator itself depending on the operating position.

See above Overview: Function of objects 9 .. 14.

6.4.4 Blinds single-surface operation

Benefit: Single-surface operation only needs one button and only occupies one input. **Functionality:** Every time the button is pressed the run direction or step direction is reversed.

Table 50

Button push	E1, E2, E3	
long	Up or down telegram (0)	
short	Step/Stop telegram in upward or	
	downward direction (0)*	

See above Overview: Function of objects 9.. 14.

6.4.5 E1 E2 Dim brighter / darker

2 buttons can be connected to provide dimming function. Objects 9 (dimming on/off) and 12 (dimming up/down) must then be linked with EIB dimming actuator DMG 2 (order no. 491 0 220).

If the *dim brighter* function is selected on E1, the corresponding function, i.e. *dim darker*, is automatically set for E2.

In both inputs there is a differentiation between short time and long time operation. The time difference between a long and a short button push is set on the *input E1* parameter page. If pressed for a short period of time, the respective telegram (ON or OFF) is sent. If pressed for a longer period of time, the telegram is sent to the dimming object (object 12).

Button push	E1	E2
long (Affects object 12)	 Pressing the button sends a start telegram for brighter dimming Letting go sends a stop telegram 	Pressing the button sends a4-bit start telegram for dim darkerLetting go sends a stop telegram
short (Affects object 9)	Switch-on telegram	Switch-off telegram

See above Overview: Function of objects 9.. 14.

6.4.6 Dimming single-surface operation

Benefit: Single-surface operation only needs one button and only occupies one input. **Functionality:** Each additional button push changes the dimming direction or switches the light on or off.

Button push	E1	
long	- Pressing the button sends a start	
	telegram for brighter or darker	
	dimming	
	- Letting go sends a stop telegram	
short	Switch-on/ switch-off telegram	

See above Overview: Function of objects 9.. 14.

Table 51

6.4.7 E3 as an analogue input for an external sensor

A remote sensor is connected to E3.

The maximum permitted line length is 10m.

The external sensor can be configured in 2 ways.

- 1. As a sensor for temperature control (order no. 907 0 191), i.e. it takes over the function of the fitted sensor.
- 2. As a sensor for temperature limitation in the underfloor (order no. 907 0 321), i.e measures the underfloor temperature, and the devices sees to it that the temperature remains within the programmed maximum and minimum values, thus maintaining a comfortable atmosphere.
- 3. As a floor sensor for temperature control (order no. 907 0 321)

All settings are entered on the <u>actualvalue</u> parameter page.

6.4.8 Suitable actuators

The following devices can be used as actuators for switching, blinds, or dimmers:

Table 52

Designation	Order no.	Description
DMG 2	491 0 220	MiX series dimmer actuator
DME 2	491 0 221	Upgrade for DMG 2 and all devices in the MiX series
RMG 4 S	491 0 204	MiX series switching actuator
RME 4 S	491 0 205	Upgrade for RMG 4 S and all devices in the MiX series
JMG 4 S	491 0 250	MiX series blinds actuator
JME 4 S	491 0 251	Upgrade for JMG 4 S and all devices in the MiX series
JMG 4	490 0 250	Blinds actuator basic device
JMG 4 24VDC	490 0 253	24V DC blinds actuator basic device
RMG 8	490 0 251	Switching and blinds actuator basic device
RME 8	490 0 252	Upgrade for RMG 8*, JMG 4* and HMG 8**
RMX 4	490 0 256	Upgrade for RMG 8*, JMG 4* and HMG 8**

* May be used as a switching and blinds actuator

** May only be used as a switching actuator

EIB product manuals for the above-mentioned devices are available on our downloads page at <u>www.theben.de</u>.

6.5 Temperature control

6.5.1 Introduction

If the RAM 713 FAN COIL is not configured as a switching controller, it can alternatively be configured as a P or as a PI controller, whereby PI control is preferable.

With the proportional control (P control), the control variable is statically adjusted to the control deviation.

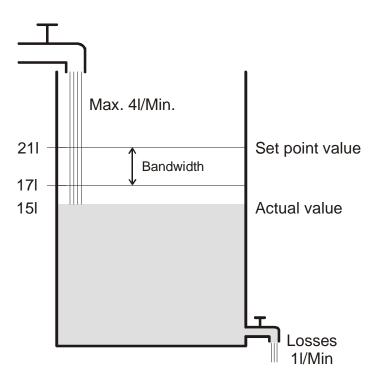
The proportional integral control (PI control) is far more flexible, i.e. controls more quickly and more accurately.

To explain the function of both temperature controls, the following example compares the room to be heated with a vessel.

The filling level of the vessel denotes the room temperature. The water supply denotes the radiator output. The heat loss from the room is illustrated by a curve.

In our example, the maximum supply volume is 4 litres per minute and also denotes the maximum radiator output.

This maximum output is achieved with an actuating value of 100%.


Accordingly, with an actuating value of 50%, only half the water volume, i.e. 2 litres per minute, would flow into our vessel.

The bandwidth is 41.

This means that the controller operates at 100% provided the actual value is smaller than, or equal, to (211 - 41) = 171.

Function:

- Desired filling volume: 21 litres (= setpoint)
- From what point should the supply flow gradually be reduced to avoid an overflow? : 41 below the desired filling volume, i.e. at 211 41 = 171 (=bandwidth)
- Original filling volume 151 (=actual value)
- The loss amounts to 11/minute

6.5.2 Response of the P-control

A filling volume of 15l gives rise to a control deviation of 211 - 151 = 61As our actual value lies outside the bandwidth, the control will operate the flow rate at 100% i.e. at 41 / minute

The supply quantity (control variable) is calculated from the control deviation (setpoint value – actual value) and the bandwidth. Control variable = (control deviation / bandwidth) x 100

The table below shows the response and therefore also the limits of the P-control

Table	53

Filling level	Control variable	Supply	Loss	Increase in filling
				level
151	100%	4 l/min		3 l/min
191	50%	2 l/min	1 l/min	1 l/min
201	25%	1 l/min		0 l/min

The last line indicates that the filling level cannot increase any further, because the inflow only allows the same amount of water to flow in as flows out through loss.

The result is a permanent control deviation of 11 and the setpoint value can never be reached. If the loss was 11 higher, the permanent control deviation would increase by the same amount and the filling level would never exceed the 191 mark.

In a room this would mean that the control deviation increases with a decreasing outside temperature.

P-control as temperature control

The P-control response during heating control is as shown in the previous example. The setpoint temperature $(21^{\circ}C)$ can never quite be reached.

The permanent control deviation increases as the heat loss increases and decreases as the ambient temperature decreases.

6.5.3 Response of the PI control

Unlike the pure P-control, the PI-control works dynamically. With this type of controller, the actuating value remains unchanged, even at a constant deviation.

In the first instant, the PI-control sends the same actuating value as the P-control, although the longer the setpoint value is not reached, the more this value increases.

This increase is time-controlled over the so-called integrated time.

With this calculation method, the actuating value does not change if the setpoint value and the actual value are the same.

Our example, therefore, shows equivalent in and outflow.

Notes on temperature control:

Effective control depends on agreement of bandwidth and integrated time with the room to be heated.

The bandwidth influences the increment of the actuating value change:

Large bandwidth = finer increment on control variable change.

The integrated time influences the response time to temperature changes:

Long integrated time = slow response.

Poor agreement can result in either the setpoint value being exceeded (overshoot) or the control taking too long to reach the setpoint value.

The best results are generally achieved using the via device type setting.

Table 54

Parameter page	Parameters	Setting
Control	Sets the control parameters	via system type

7 Glossary

7.1 Continuous and switching control

A switching (2 point) control recognises only 2 statuses, On or Off.

A continuous control works with a control variable between 0% and 100% and can thus exactly measure out the energy input. This achieves a pleasant and precise degree of control.

7.2 Hysteresis

Hysteresis determines the difference between a controller's switching on and off temperature. It can be both positive and negative.

A combination of heating and cooling control influences the amount of the <u>dead zone</u>.

Without hysteresis, the control would switch on and off continuously provided the temperature is within the setpoint value range.

7.2.1 Negative hysteresis:

Heating: Heating is provided until the setpoint value has been reached.

Afterwards, the heating is only switched on again when the temperature falls below the *hysteresis setpoint value* threshold.

Cooling: Cooling lasts until the *hysteresis setpoint value* threshold has been achieved. Afterwards, it is only switched on again when the temperature rises above the setpoint.

Cooling example:

Cooling with setpoint value 25 °C, hysteresis = 1°C and ambient temperature 27 °C. The cooling is switched and only switched off again when a temperature of 24C (25 °C – 1 °C) is achieved.

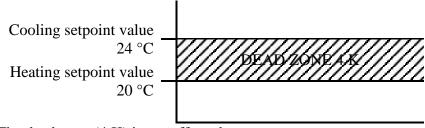
It switches on again when the temperature rises above 25 $^\circ$ C.

7.2.2 Positive hysteresis

Heating lasts until the temperature reaches the *setpoint value* + *hysteresis* threshold. The heating is only switched on again when the temperature falls below the setpoint value.

Heating example:

Heating with setpoint value 20°C, hysteresis = 1°C and ambient temperature 19 °C. The heating is switched on and only switches off again when a temperature of 21C (20 °C + 1 °C) is achieved. It switches on again when the temperature falls below 20 °C.


7.3 Dead zone

The dead zone is a buffer area between heating and cooling operation. Neither heating nor cooling takes place within this dead zone.

Without this buffer zone, the system would switch continuously between heating and cooling. As soon as the setpoint value has been under-run, the heating is activated and the setpoint value would not be achieved. If cooling were then to be started immediately, the temperature would fall below the setpoint value and switch on the heating again..

Depending on the type of control, the dead zone can be extended by the value of the <u>hysteresis</u>.

7.3.1 Heating and cooling with continuous control

The dead zone (4 K) is not affected

7.4 Base setpoint value and current setpoint value

The **basicsetpointvalue** is the standard temperature for the comfort mode and the reference temperature for reduction in standby and night modes.

The configured base setpoint value (see <u>basesetpointvalue afterdownloading the application</u>) is stored in object 0 and be amended at any time via the bus by sending a new value on <u>object</u> $\underline{0}$ (EIS5).

After reset (bus returned), the last used base setpoint value is restored.

The **current setpoint value** is the value that actually determines the control. It is the result of all the operating mode reductions or increases depending on the control function.

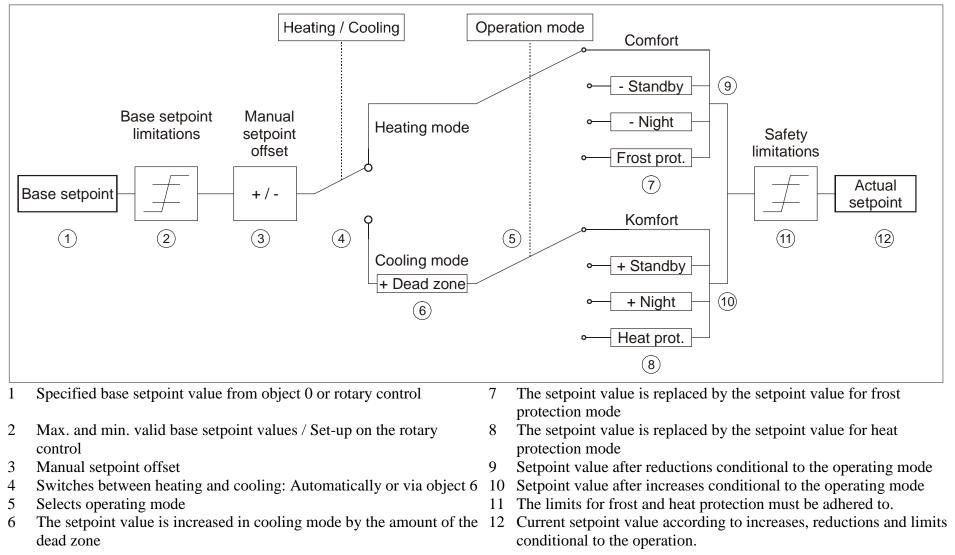
Example:

At a base setpoint value of 22° C and a reduction in night mode of 4K, the current setpoint value (in night mode) is: 22° C – 4K = 18° C. During the day (in comfort mode) the current setpoint value is 22° C (providing the cooling operation is not active).

The formation of the current setpoint value relating to the base setpoint value can be observed in the block diagram on the next page:

The base setpoint value on the left is specified via object 0 or set on the rotary control. The current setpoint value is on the right, i.e. the value upon which the room temperature is effectively controlled.

As you can see in the block diagram, the current setpoint value depends on the operating mode (5) and the control function (4) selected.


The base setpoint value limits (2) prevent an incorrect base setpoint value from being specified to

object 0. These are the following parameters:

- Minimum valid base setpoint value
- Maximum valid base setpoint value
- Minimum setting on the rotary control
- Maximum setting on the rotary control

The base setpoint value limits (2) prevent an incorrect base setpoint value from being specified to

7.4.1 Setpoint value calculation

theben