

Heating Actuators in the MIX2 Series HMG 6 T, HME 6 T FIX1 HM 6 T FIX2 HM 12 T

HMG 6 T	4930240
HME 6 T	4930245
HM 6 T	4940240
HM 12 T	4940245

Contents

1 Contents

2	FUNCTIONAL CHARACTERISTICS	<i>3</i>
3	MIX2 AND FIX1/FIX2 DEVICES	4
4	MIX AND MIX2 DEVICES	4
•	4.1 OPERATION	
5	TECHNICAL DATA	
6	THE APPLICATION PROGRAM "MIX2 V1.B" (V1.11)	
•		
	6.1 SELECTION IN THE PRODUCT DATABASE6.2 COMMUNICATION OBJECTS	
	6.2.1 Channel- and module-related objects	
	6.2.2 Common objects	
	6.2.3 Description of objects	
	6.3 Parameter	
	6.3.1 Parameter pages	
	6.3.2 General	
	6.3.3 Parameters for the heating actuator	
	6.3.4 Parameters for the heating controller	
7	TYPICAL APPLICATIONS	48
	7.1 SIMPLE CONTROL WITH ONE HMG 6 T CHANNEL AS HEATING ACTUATOR	48
	7.1.1 Devices:	
	7.1.2 Overview	
	7.1.3 Objects and links	
	7.1.4 Important parameter settings	
	7.2 SCHOOL LOCATION: HMG 6 T AS HEATING CONTROLLER WITH AUTOMATIC SUMMI	
	MODE. 52	
	7.2.1 Devices:	52
	7.2.2 Overview	5 <i>3</i>
	7.2.3 Objects and links	54
	7.2.4 Important parameter settings	56
8	APPENDIX	57
	8.1 DETERMINING THE CURRENT OPERATING MODE	57
	8.1.1 Determining the setpoint value	
	8.2 SETPOINT OFFSET	
	8.3 BASE SETPOINT VALUE AND CURRENT SETPOINT VALUE	61
	8.4 Short-circuit and overcurrent shutdown	62
	8.5 Load distribution, connection of devices	62
	8.6 CONVERSION OF PERCENTAGES TO HEXADECIMAL AND DECIMAL VALUES	63
9	RELEASE NOTES	64

2 Functional characteristics

- MIX2 6-channel heating actuator
- With 6 temperature controllers (P/PI) for heating and cooling
- MIX2 basic module
- For extension to maximum of 18 channels (MIX2)
- For controlling 6 thermal actuators 24 V 230 V AC in 2 groups with 3 outputs and 450 mA each
- With short-circuit and overload protection
- Continuous or switching actuating value selectable
- Valve protection function can be deactivated
- With the modes: comfort, standby, night as well as frost/heating protection
- Changeover to summer mode possible
- Up to 2 MIX or MIX2 extension modules can be connected to a basic module
- Device and KNX bus module can be swapped independently of each other
- Removable KNX bus module enables devices to be changed without reprogramming
- Manual start-up and use of the actuators is possible even without the KNX bus module
- LED switching status indicator for each channel
- Manual operation on device (even without bus voltage)

3 MIX2 and FIX1/FIX2 Devices

This manual describes the MIX2 devices and can also be used with devices from the FIX2 Series.

A FIX1 device behaves like a MIX2 basic module.

A FIX2 device behaves like a MIX2 basic module and an extension module of the same type (e.g. blinds actuator) in a common housing.

Devices in the FIX Series (Order No. 494..):

- Cannot be extended
- Cannot be combined

The remaining functions are identical to those in the MIX2 Series.

4 MIX and MIX2 devices

The MIX2 Series consists of the basic modules RMG 4 I, RMG 8 S, RMG 8 T, DMG 2 T, JMG 4 T, JMG 4 T 24V, HMG 6 T + extensions RME 4 I, RME 8 S, RME 8 T, DME 2 T, JME 4 T, JME 4 T 24V, HMG 6 T (04.2014).

Any MiX and MIX2 extension modules can be connected to a MIX2 basic module.

Table 1

A1: (Order	Decimation	Can be used with basic module			
Appliance type	No.	Designation	in the MIX series	in the MIX2 series		
MIX2 basic	493	RMG 4 I, RMG 8 S, RMG 8 T,				
modules		DMG 2 T, JMG 4 T,	-	-		
		JMG 4 T 24V, HMG 6 T.				
MIX2 upgrades	493	RME 4 I, RME 8 S, RME 8 T,				
		DME 2 T, JME 4 T,	no	Yes		
		JME 4 T 24V, HME 6 T.				
MIX basic	491	BMG 6, DMG 2 S, HMG 4,				
modules		JMG 4 S, RMG 4 S,	-	-		
		RMG 4 C-Last, SMG 2 S				
MIX upgrades	491	BME 6, DME 2 S, HME 4,				
		JME 4 S, RME 4 S,	yes	Yes*		
		RME 4 C-load, SME 2 S				

^{*} Adjusted parameter display and object numbering.

4.1 Operation

Each module has a manual button.

When manual mode is activated, the device can only be operated with the buttons; bus telegrams are not implemented.

A button and an LED are available for each channel.

The LEDs show the current state of the output.

In standard operation:

Case 1, channel is off:

Pressing the channel button switches on the output for 5 minutes.

Case 2, channel is already on:

Pressing the channel button switches the output off for 5 **seconds**.

During this time (5 minutes. or 5 seconds), bus telegrams are ignored.

The device then returns to normal operation.

In manual mode with the manual button or Manual object:

In the manual mode, the buttons can be used to switch the channels on or off as desired. The time limits for normal operation (5 min. and 5 s) do not apply in this case.

If the "manual" function is selected, the associated LED lights up.

The channel status will be frozen and can only be changed via the channel buttons.

Bus telegrams will not be implemented.

The "Manual" state will be cancelled during a mains failure.

After manual operation has been cancelled, already-received bus events will not be executed again.

Updated: Jul-20 (subject to change)

5 Technical data

Operating voltage KNX	Bus voltage, ≤ 4 mA
Operating voltage	110 – 240 V AC
Frequency	50 – 60 Hz
Standby output	0,3 W / 0,5W ¹
Width	4 module / 8 module ¹
Installation type	DIN-rail
Number of channels	6 /121
Connection type	Terminals screws
Max. cable cross-section	Solid: 0.5 mm ² (Ø 0.8) to 4 mm ² strand with crimp terminal: 0.5 mm ² to 2.5 mm ²
Output	Triac C1-C3: I_{Σ} 0,45 A max. C4-C6: I_{Σ} 0,45 A max. C7-C9: I_{Σ} 0,45 A max. C10-C12: I_{Σ} 0,45 A max. I_{Σ}
Switch output	Floating
Voltage output	24 V AC – 240 V AC
Suitable for SELV	Yes, if all channels switch SELV
Switching of different phases	Possible
Ambient temperature	-5 °C +45 °C
Protection rating	IP 20
Protection class	II in accordance with EN 60 730-1

¹ HM 12 T

6 The application program "MIX2 V1.B" (V1.11)

6.1 Selection in the product database

Manufacturer	Theben AG
Product family	Heating actuators
Product type	HMG 6 T
Program name	MIX2 V1.B

The ETS database can be found on our website: www.theben.de/en/downloads_en

Table 2

Number of communication objects:	254
Number of group addresses:	254
Number of associations:	255

6.2 Communication Objects

The objects are divided into channel-related and common objects

6.2.1 Channel- and module-related objects

Table 3

No.	Object name	Function	Length	Flags			
140.	Object name	1 unction	DPT	C	R	W	T
		Base setpoint value	2 byte 9.001	C	R	W	-
0	HMG 6 T Channel H1	Switching actuating value	1 bit 1.001	C	R	W	-
		Continuous actuating value	1 byte 5.001	С	R	W	-
1	HMG 6 T Channel H1	Manual setpoint offset	2 byte 9.002	С	R	W	-
2	HMC 6 T. Channal H1	Actual value	2 byte 9.001	С	R	W	-
2	HMG 6 T Channel H1	Block valve protection	1 bit 1.003	С	R	W	-
2	IMC 6 T. Channel III	Current actuating value	1 byte 5.001	С	R	-	Т
3	HMG 6 T Channel H1	Operating mode preset	1 byte 20.102	С	R	W	-
4	HMG 6 T Channel H1	Presence	1 bit 1.018	С	R	W	-
5	HMG 6 T Channel H1	Window position	1 bit 1.019	С	R	W	-
6	HMG 6 T Channel H1	Current operating mode	1 byte 20.102	С	R	-	Т
7	HMC (T. Cl. 1111	Heating actuating value	1 byte 5.001	С	R	-	Т
7	HMG 6 T Channel H1	Heating and cooling actuating value	1 byte 5.001	С	R	-	Т
8	HMG 6 T Channel H1	Cooling actuating value	1 byte 5.001	С	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
9	HMG 6 T Channel H1	Heating = 1, cooling = 0	1.100	С	R	W	-
	Time of Chamber III	Forced operation mode	1 bit 1.003	С	R	W	-
10	HMG 6 T Channel H1	Current setpointvalue	2 byte 9.001	С	R	W	Т
11	UMC 6 T. Cl	Report actual value failure	1 bit 1.005	С	R	-	Т
11	HMG 6 T Channel H1	Report actuating value failure	1 bit 1.005	С	R	-	Т

No.	Object name	Function	Length		Fla		
110.	oject name		DPT 2 bysto	C	R	W	T
		Base setpoint value	2 byte 9.001	C	R	W	-
12	HMG 6 T Channel H2	Switching actuating value	1 bit 1.001	C	R	W	-
		Continuous actuating value	1 byte 5.001	C	R	W	-
13	HMG 6 T Channel H2	Manual setpoint offset	2 byte 9.002	С	R	W	-
14	HMG 6 T Channel H2	Actual value	2 byte 9.001	С	R	W	ı
14	HMG 0 1 Channel H2	Block valve protection	1 bit 1.003	С	R	W	-
15	HMG 6 T Channel H2	Current actuating value	1 byte 5.001	С	R	-	Т
15	пмG01 Cnannei H2	Operating mode preset	1 byte 20.102	С	R	W	ı
16	HMG 6 T Channel H2	Presence	1 bit 1.018	С	R	W	-
17	HMG 6 T Channel H2	Window position	1 bit 1.019	С	R	W	1
18	HMG 6 T Channel H2	Current operating mode	1 byte 20.102	С	R	-	Т
10	IIMC 6 T. Cl LUO	Heating actuating value	1 byte 5.001	С	R	-	Т
19	HMG 6 T Channel H2	Heating and cooling actuating value	1 byte 5.001	С	R	-	Т
20	HMG 6 T Channel H2	Cooling actuating value	1 byte 5.001	С	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
21	HMG 6 T Channel H2	Heating = 1, cooling = 0	1.100	C	R	W	-
		Forced operation mode	1 bit 1.003	C	R	W	-
22	HMG 6 T Channel H2	Current setpointvalue	2 byte 9.001	C	R	W	Т
23	HMG 6 T Channel H2	Report actual value failure	1 bit 1.005	C	R	-	Т
23	пмG01 Cnannei H2	Report actuating value failure	1 bit 1.005	С	R	-	Т
		Base setpoint value	2 byte 9.001	С	R	W	-
24	HMG 6 T Channel H3	Switching actuating value	1 bit 1.001	С	R	W	-
		Continuous actuating value	1 byte 5.001	С	R	W	-
25	HMG 6 T Channel H3	Manual setpoint offset	2 byte 9.002	С	R	W	-
26	IIMC (T. Cl. 1.112	Actual value	2 byte 9.001	С	R	W	-
26	HMG 6 T Channel H3	Block valve protection	1 bit 1.003	С	R	W	-

No.	Object name	Function	Length			ags	
1,0.	o o jobe name	2 Moudi	DPT	C	R	W	T
27	HMG 6 T Channel H3	Current actuating value	1 byte 5.001	C	R	-	Т
21	IIMG 0 1 Channet 113	Operating mode preset	1 byte 20.102	C	R	W	-
28	HMG 6 T Channel H3	Presence	1 bit 1.018	С	R	W	-
29	HMG 6 T Channel H3	Window position	1 bit 1.019	С	R	W	-
30	HMG 6 T Channel H3	Current operating mode	1 byte 20.102	С	R	-	Т
21	IIMC (T. Cl. 1 H2	Heating actuating value	1 byte 5.001	С	R	-	Т
31	HMG 6 T Channel H3	Heating and cooling actuating value	1 byte 5.001	С	R	-	Т
32	HMG 6 T Channel H3	Cooling actuating value	1 byte 5.001	С	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
33	HMG 6 T Channel H3	Heating = 1, cooling = 0	1.100	С	R	W	-
33		Forced operation mode	1 bit 1.003	С	R	W	-
34	HMG 6 T Channel H3	Current setpointvalue	2 byte 9.001	С	R	W	Т
25	HMC 6 T. Channal H2	Report actual value failure	1 bit 1.005	С	R	-	Т
35	HMG 6 T Channel H3	Report actuating value failure	1 bit 1.005	С	R	-	Т
	HMG 6 T Channel H4	Base setpoint value	2 byte 9.001	С	R	W	-
36		Switching actuating value	1 bit 1.001	С	R	W	-
		Continuous actuating value	1 byte 5.001	С	R	W	-
37	HMG 6 T Channel H4	Manual setpoint offset	2 byte 9.002	С	R	W	_
20	HMC 6 T. Channel HA	Actual value	2 byte 9.001	C	R	W	1
38	HMG 6 T Channel H4	Block valve protection	1 bit 1.003	С	R	W	_
20	IIMC 6 T. Channal III	Current actuating value	1 byte 5.001	С	R	-	Т
39	HMG 6 T Channel H4	Operating mode preset	1 byte 20.102	С	R	W	-
40	HMG 6 T Channel H4	Presence	1 bit 1.018	С	R	W	-
41	HMG 6 T Channel H4	Window position	1 bit 1.019	С	R	W	-
42	HMG 6 T Channel H4	Current operating mode	1 byte 20.102	С	R	-	Т

No.	Object name	Function	Length			ags	
110.	Object name	Tullottoli	DPT	C	R	W	T
43	HMG 6 T Channel H4	Heating actuating value	1 byte 5.001	C	R	-	T
73	11MO 0 1 Chamer 114	Heating and cooling actuating value	1 byte 5.001	C	R	-	Т
44	HMG 6 T Channel H4	Cooling actuating value	1 byte 5.001	C	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
45	HMG 6 T Channel H4	Heating = 1, cooling = 0	1.100	С	R	W	-
43	IIMO 0 1 Channel 114	Forced operation mode	1 bit 1.003	С	R	W	-
46	HMG 6 T Channel H4	Current setpointvalue	2 byte 9.001	С	R	W	Т
47	WAG (T. Cl.) HA	Report actual value failure	1 bit 1.005	С	R	-	Т
47	HMG 6 T Channel H4	Report actuating value failure	1 bit 1.005	С	R	-	Т
		Base setpoint value	2 byte 9.001	С	R	W	-
48	HMG 6 T Channel H5	Switching actuating value	1 bit 1.001	С	R	W	-
		Continuous actuating value	1 byte 5.001	С	R	W	-
49	HMG 6 T Channel H5	Manual setpoint offset	2 byte 9.002	С	R	W	-
~0	WAG CE CL. LW	Actual value	2 byte 9.001	С	R	W	-
50	HMG 6 T Channel H5	Block valve protection	1 bit 1.003	С	R	W	-
51	HMG 6 T Channel H5	Current actuating value	1 byte 5.001	С	R	-	Т
51	HMG 6 T Channel H5	Operating mode preset	1 byte 20.102	С	R	W	-
52	HMG 6 T Channel H5	Presence	1 bit 1.018	С	R	W	-
53	HMG 6 T Channel H5	Window position	1 bit 1.019	С	R	W	-
54	HMG 6 T Channel H5	Current operating mode	1 byte 20.102	С	R	-	Т
5.5	HMC (T. Cl.) HS	Heating actuating value	1 byte 5.001	С	R	-	Т
55	HMG 6 T Channel H5	Heating and cooling actuating value	1 byte 5.001	С	R	-	Т
56	HMG 6 T Channel H5	Cooling actuating value	1 byte 5.001	С	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
57	HMC 6 T Channal HE	Heating = 1, cooling = 0	1.100	С	R	W	-
31	HMG 6 T Channel H5	Forced operation mode	1 bit 1.003	С	R	W	-
58	HMG 6 T Channel H5	Current setpointvalue	2 byte 9.001	С	R	W	Т

No.	Object name	Function	Length			ags	
110.	Object name	Tunction	DPT	C	R	W	T
59	HMG 6 T Channel H5	Report actual value failure	1 bit 1.005	C	R	-	T
39	IIMG 0 1 Channet II3	Report actuating value failure	1 bit 1.005	C	R	-	Т
		Base setpoint value	2 byte 9.001	С	R	W	-
60	HMG 6 T Channel H6	Switching actuating value	1 bit 1.001	С	R	W	-
		Continuous actuating value	1 byte 5.001	С	R	W	-
61	HMG 6 T Channel H6	Manual setpoint offset	2 byte 9.002	С	R	W	-
	WAR CE CL. LWC	Actual value	2 byte 9.001	С	R	W	-
62	HMG 6 T Channel H6	Block valve protection	1 bit 1.003	С	R	W	-
		Current actuating value	1 byte 5.001	С	R	-	Т
63	HMG 6 T Channel H6	Operating mode preset	1 byte 20.102	С	R	W	-
64	HMG 6 T Channel H6	Presence	1 bit 1.018	С	R	W	-
65	HMG 6 T Channel H6	Window position	1 bit 1.019	С	R	W	-
66	HMG 6 T Channel H6	Current operating mode	1 byte 20.102	С	R	-	Т
<i>(</i> 7	HMG 6 T Channel H6	Heating actuating value	1 byte 5.001	С	R	-	Т
67		Heating and cooling actuating value	1 byte 5.001	С	R	-	Т
68	HMG 6 T Channel H6	Cooling actuating value	1 byte 5.001	С	R	-	Т
		Heating = 0, cooling = 1	1.001	С	R	W	-
69	HMG 6 T Channel H6	Heating = 1, cooling = 0	1.100	C	R	W	-
		Forced operation mode	1 bit 1.003	C	R	W	-
70	HMG 6 T Channel H6	Current setpointvalue	2 byte 9.001	C	R	W	Т
71	HMC (T. Cl.) LH(Report actual value failure	1 bit 1.005	С	R	-	Т
71	HMG 6 T Channel H6	Report actuating value failure	1 bit 1.005	С	R	-	Т
72	HMG 6 T	Summer mode ON/OFF	1 bit 1.003	С	R	W	-
73	HMG 6 T	Overcurr./short circuit H1-H3	1 bit 1.005	С	R	-	Т
74	HMG 6 T	Overcurr./short circuit H4-H6	1 bit 1.005	С	R	-	Т
75	HMG 6 T	Highest actuating value	1 byte 5.001	С	R	-	Т
		•		•			

No.	Object name	Function	Length		Fla	ags	
INO.	Object name	runcuon	DPT	C	R	W	T
76	HMG 6 T	Pump ON/OFF	1 bit 1.001	С	R	-	Т
77	HMG 6 T	Outside temperature	2 byte 9.001	C	R	W	-
78	HMG 6 T	Manual	1 bit 1.001	C	R	W	Т
79	HMG 6 T	Outside temperature failure	1 bit 1.005	C	R	-	Т

Table 4: Overview of channel- and module-related objects

Basic module				1st extension				2st extension									
HMG 6 T				HME 6 T				HME 6 T									
C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6
0	12	24	36	48	60	80	92	104	116	128	140	160	172	184	196	208	220
1	13	25	37	49	61	81	93	105	117	129	141	161	173	185	197	209	221
2	14	26	38	50	62	82	94	106	118	130	142	162	174	186	198	210	222
3	15	27	39	51	63	83	95	107	119	131	143	163	175	187	199	211	223
4	16	28	40	52	64	84	96	108	120	132	144	164	176	188	200	212	224
5	17	29	41	53	65	85	97	109	121	133	145	165	177	189	201	213	225
6	18	30	42	54	66	86	98	110	122	134	146	166	178	190	202	214	226
7	19	31	43	55	67	87	99	111	123	135	147	167	179	191	203	215	227
8	20	32	44	56	68	88	100	112	124	136	148	168	180	192	204	216	228
9	21	33	45	57	69	89	101	113	125	137	149	169	181	193	205	217	229
10	22	34	46	58	70	90	102	114	126	138	150	170	182	194	206	218	230
11	23	35	47	59	71	91	103	115	127	139	151	171	183	195	207	219	231
		7	2			152			232								
		7	3			153				233							
		7	4			154				234							
75				155				235									
76				156			236										
77				157			237										
78				158			238										
	_	7	9	_			•	15	59		_	239					

6.2.2 Common objects

These objects are partly used by the basic module and the two extension modules.

Table 5:

No.	Object name	Function	Type	Flags			
140.	Object name		DPT	C	R	W	T
240	Central continuous ON	For RMG 8S, DME 2 S, SME 2 S, DMG 2 T, DME 2 T	1 bit 1.001	C	R	W	Т
241	Central continuous OFF	For RMG 8S, DME 2S, SME 2S, DMG 2 T, DME 2 T	1 bit 1.001	С	R	W	Т
242	Central switching	For RMG8S, DME 2S, SME 2S, DMG 2 T, DME 2 T	1 bit 1.001	С	R	W	Т
243	Call up/save central scenes	RMG8S, DME2S, JME4S, SME2S, DMG 2 T, DME 2 T	1 byte 18.001	С	R	W	Т
244	Central safety 1	For JMG 4 T (Wind), JME 4 S	1 bit 1.005	С	R	W	-
245	Central safety 2	For JMG 4 T (Wind), JME 4 S	1 bit 1.005	С	R	W	-
246	Central safety 3	For JMG 4 T (Wind), JME 4 S	1 bit 1.005	С	R	W	-
247	Central up/down	For JMG 4 T, JME 4 S	1 bit 1.008	С	R	W	-
248	Central safety rain	For JMG 4 T	1 bit 1.005	С	R	W	-
249	Central safety frost	For JMG 4 T	1 bit 1.005	С	R	W	ı
250	Version of bus coupling unit	transmit	14 byte 16.001	С	R	-	Т
251	Version of basic module	transmit	14 byte 16.001	С	R	-	Т
252	Version of first extension module	transmit	14 byte 16.001	С	R	_	Т
253	Version of second extension module	transmit	14 byte 16.001	С	R	-	Т

6.2.3 Description of objects

The function of the channel, i.e. *heating actuator* or *heating controller* determines the type and function of the objects.

6.2.3.1 Objects for the heating actuator function

• Object 0 "Continuous actuating value, switching actuating value"

The actuating value receives data from the room thermostat for the corresponding valve. It can either be continuous (0-100%) or switching (ON/OFF) depending on the configuration.

Object 1

Not used.

• Object 2 ,,Block valve protection"

Blocks the valve protection function.

• Object 3 "Current actuating value"

Reports the actual value of the actuating value generated for the channel.

• Objects 4, 5, 6, 7, 8, 9, 10

Not used.

• Object 11 "Report actuating value failure"

Present only if, on the *Configuration options* parameter page, the parameter *Monitor the actuating value* = *yes*.

If monitoring is selected, the room thermostat must receive an actuating-value telegram regularly. Recommendation: To ensure trouble-free operation, the cyclical transmission time to the room thermostat should be no longer than half the monitoring time.

Example: Monitoring time 30 min, cyclical transmission time to thermostat less than or equal to 15 min.

If no new actuating value is received within the configured monitoring time, failure of the room thermostat is assumed and an emergency program is started. See emergency program parameter page.

This function can be selected or deactivated individually for each channel.

The monitoring time is set jointly for all channels on the Channel H1-H6 monitoring page.

Updated: Jul-20 (subject to change)

6.2.3.2 Objects for the heating controller function

• Object 0 ''Base setpoint value''

The Base setpoint value value is first specified via the application at start-up and stored in the "Base setpoint value" object.

It can be reset at any time using object 0 (limited by minimum or maximum valid setpoint value). The object can be described as required.

• Object 1 "Manual setpoint offset

Offset setpoint temperature:

The object receives a temperature difference as DPT 9.002. The desired room temperature (current setpoint value) can be adjusted from the base setpoint value by this difference.

The following applies in comfort mode (heating):

Current setpoint value (obj. 10) = base setpoint value + manual setpoint offset (obj. 1)

Values beyond the configured range (*maximum or minimum valid setpoint value on the setpoint values parameter page*) are limited to the highest or lowest value.

Remarks:

The offset is always in relation to the set *base setpoint value* and not to the current setpoint value.

See also: Determining the setpoint value

• Object 2 ,, Actual value"

Receives the current room temperature for the control.

• Object 3 "Operating mode"

1 byte object. One of 4 operating modes can be directly activated.

1 = Comfort, 2 = Standby, 3 = Night,

4 = Frost protection (heat protection)

If another value is received (0 or >4) the comfort operation mode is activated.

The details in brackets refer to cooling mode

• Object 4 "Presence"

The status of a presence detector (e.g. push button, motion detector) can be received via this object. 1 on this object activates the comfort operating mode.

• Object 5 "Window"

The status of a window contact can be received via this object.

1 on this object activates the frost / heat protection operating mode.

• Object 6 "Current operating mode"

Transmits the current operation mode as a 1 byte value (see table).

The transmission behaviour can be set on the *Operating mode* parameter page.

Table 6: Coding of HVAC operating modes:

Value	select
1	Comfort
2	Standby
3	Night
4	Frost protection/heat
	protection

• **Object 7** "Heating actuating value, heating and cooling actuating value"

Sends the current heating actuating value (0...100%), or heating or cooling if the *Output of cooling* actuating value parameter has been set to *Together with heating actuating value*.

• **Object 8** "Cooling actuating value"

Sends the cooling actuating value or switching command to control a cooling surface, fan coil unit etc. The send format DPT 5.001 or DPT 1.001 depends on the selected *Type of control* (continuous or switching) on the *Cooling control* page.

Note:

Object 8 is not available:

- With the setting *Heating control only* (Settings parameter page), as cooling function is not available.
- If Changeover between heating and cooling \rightarrow via object is selected and Output of cooling actuating value is set to Together with heating actuating value (Cooling control parameter page).
 - **Object 9** "Changeover between heating and cooling", "forced operation"

The function of the object depends on the setting of the Changeover between heating and cooling parameter on the Cooling control parameter page.

Table 7

Switchover between heating and cooling						
Automatic	Via object					
Forced operation.	This object is used in 2-pipe heating/cooling systems or if automatic					
The direction of action of the	change over between heating and cooling is not desired.					
force telegram is adjustable.						
Standard:	The telegram format can be set on the <i>coolin</i>	ng control parameter page:				
1 = activate force	Parameter: Format object heating/cooling	Telegram format				
0 = end force.	DPT1.100	Heating = 1 , cooling = 0				
	Inverted	Heating = 0 , cooling = 1				

• **Object 10** "Current setpoint value"

Sends the current setpoint value in DPT 9.001 format to the bus.

• **Object 11** "Actual value failure"

Sends a 1 if no valid actual value was received during the monitoring time.

• Objects 12-71

Objects for channels H2-H6.

6.2.3.3 Common objects

• Object 72 "Summer mode"

When 1 is set for the object, all channels configured for it are switched over to the summer mode and heating no longer takes place.

A valve protection program can also optionally be executed in the summer mode.

• **Object 73** "Overcurrent/short circuit H1-H3"

Reports overload or short circuit on channels H1, H2, H3.

0 = No error

1 = Overload or short circuit on at least one of the 3 channels H1-H3

• **Object 74** "Overcurrent/short circuit H4..H6"

0 = No error

1 = Overload or short circuit on at least one of the 3 channels H4-H6

• **Object 75** "Highest actuating value"

This object is available if at least 1 channel was configured as a continuous controller.

The actuating values for the channels are continuously compared with each other and only the highest current value is sent to this object.

The current heat requirement of the system is thus constantly reported to the heating boiler, which then adapts its output to the actual requirement.

Whether a channel is taken into account for determining the highest actuating value can be selected individually for each channel. For example, insignificant rooms can be ignored for the heat requirement.

• **Object 76** "Pump"

Control of the supply pump. This object is used jointly for all channels of a module.

• **Object 77** "Outside temperature"

Receives the outside temperature.

Page 19 of 64

• Object 78 "Manual"

Only available for devices in the MIX2 series (order number 493...)

Puts the relevant module in manual mode or sends the status of the manual operation.

Table 8

Telegram	Meaning	Explanation
0	Auto	All channels can be operated via the bus as well as via the buttons.
1	Manual	The channels can only be operated via the buttons on the device. Bus telegrams will not work.

The duration of the manual mode, i.e. *operation of the manual button* is adjustable on the *General* parameter page.

After manual operation has been cancelled, already-received bus events will not be executed again. The "Manual" state will be reset in the event of a mains failure.

• **Object 79** "Outside temperature failure"

0 = No error

1 = Error: Outside temperature no longer being received.

• Objects 80-159

Objects for the first extension module HME 6 T.

• Objects 160-239

Objects for the second extension module HME 6 T.

• Objects 240 - 249

Not used for HMG 6 T and HME 6 T.

• Object 250 "Version of bus coupling unit"

For diagnostic purposes only.

Sends the bus coupling unit software version after reset or download.

Can also be read out via the ETS.

Format: Axx Hyy Vzzz

Code	Meaning
XX	00 FF = Version of application without dividing point (14 = V1.4, 15 = V1.5 etc.).
уу	Hardware version 0099
ZZZ	Firmware version 000999

EXAMPLE: A15 H03 V014

- ETS Application Version 1.5
- Hardware version \$03
- Firmware version \$14
 - Object 251 "Version of basic module"

For diagnostic purposes only.

Only for basic modules in the MIX2 series (order number 493...).

Sends the software version (firmware) of the basic module after reset or download. Can also be read out via the ETS.

The version is issued as an ASCII character string.

Format: Mxx Hyy Vzzz

Code	Meaning
XX	01 FF = Module code (hexadecimal).
уу	Hardware version 0099
ZZZ	Firmware version 000999

Possible module codes (04.2014)

Module	Code
Module or mains voltage are unavailable.	\$00
RMG 8 S	\$11
RMG 4 I	\$12
DMG 2 T	\$13
JMG 4 T/JMG 4 T 24V	\$14
HMG 6 T	\$15
RMG 8 T	\$17

EXAMPLE: M15 **H**25 **V**025

- Module \$15 = HMG 6 T
- Hardware version V25
- Firmware version V25

• Object 252 "Version of first extension module"

Telegram format: See above, object 251

Possible module codes (04.2014)

Module	Code
Module or mains voltage are unavailable.	\$00
RME 8 S	\$11
RME 4 I	\$12
DME 2 T	\$13
JME 4 T/JME 4 T 24V	\$14
HME 6 T	\$15
RME 8 T	\$17

• Object 253 "Version of second extension module"

See above, object 252

6.3 Parameter

6.3.1 Parameter pages

The HMG 6 T heating actuator has 6 identical channels that can be configured individually as actuator or controller.

Table 9

Function	Description		
General	Selection of module and central parameters.		
BASIC MODULE: HMG 6 T	(Empty page).		
HMG 6 T Channel H1	Selection as heating controller / heating actuator and activation		
Configuration options	of additional functions.		
Settings	Standard/user-defined control.		
Heating control	Control parameters, installation type etc. for the heating mode.		
Setpoint values	Base setpoint value, lowering, frost protection etc.		
Cooling control	Control parameters, installation type etc. for the cooling mode.		
Cooling setpoint values	Dead zone, standby, heat protection etc.		
Operating mode	Operating mode after reset, presence sensor etc.		
Channel characteristics	Parameters for actuator control.		
Emergency program	Response to failure of the actuating value or the actual value.		
Forced operation	Response in forced-operation mode.		
Channel H1-H6 monitoring	Monitoring of actuating value, actual value, outside temperature.		
Н1-Н6 Ритр	Pump control strategy.		

6.3.2 General

Table 10

Designation	Values	Description
Type of basic module	Select device	Selection of available basic
	<i>RMG 8 S.</i> .	module
	<i>RMG 8 T.</i> .	(MIX2 series only)
	<i>RMG 4 I.</i> .	
	DMG 2 T	
	JMG 4 T/JMG 4 T 24V	
	HMG 6 T	
Type of first extension module		Selection of first extension
	<i>RME 8 S.</i> .	module,
		if available.
	<i>RME 4 I.</i> .	(MIX or MIX2 series)
	DME 2 T	
	<i>JME 4 T/JME 4 T 24V.</i> .	
	<i>HME 6 T.</i> .	
	RME 4 S / RME 4 C-Last	
	<i>DME 2 / SME 2</i>	
	<i>BME 6</i>	
	<i>JME 4 S.</i> .	
	HME 4	
Type of second extension module		Selection of second extension
		module,
		if available.
		(MIX or MIX2 series)
	DME 2 T	
	JME 4 T/JME 4 T 24V	
	<i>HME 6 T.</i> .	
	RME 4 S / RME 4 C-Last	
	DME 2 / SME 2	
	BME 6	
	JME 4 S	
	HME 4	I TOTAL
Time for cyclical sending of	2 minutes, 3 minutes,	This parameter is used
feedback object	5 minutes, 10 minutes,	exclusively for MIX Series
(MIX series, order no. 491)	15 minutes, 20 minutes	extension modules (DME 2 S,
	30 minutes, 45 minutes	SME 2, JME 4 S, BME 6, RME
	60 minutes	4 S / C-Last, and HME 4).

Designation	Values	Description
Function of manual button	applies for 24 hours or until	Determines how long the device
(MIX2 series, order no. 493)	reset via object	works manually and how this is
	disabled	ended.
	applies until reset via object	
	applies for 30 minutes or until	In manual mode, the channels
	reset via object	can only be switched on and off
	applies for 1 hour or until reset	via the push buttons on the
	via object	device.
	applies for 2 hours or until reset	See also: Object_78
	via object	
	applies for 4 hours or until reset	This parameter is used
	via object	exclusively for MIX2 series
	applies for 8 hours or until reset	devices.
	via object	
	applies for 12 hours or until	
	reset via object	
Manual operation of channels	enabled	The channels can be operated via
(MIX2 series, order no. 493)		the buttons on the device.
	disabled	No manual operation, the buttons
		on the device are locked.

6.3.3 Parameters for the heating actuator

6.3.3.1 HMG 6 T Channel H1 Configuration options

Table 11

Designation	Values	Description
Channel function	Heating actuator	Should the channel be used as an actuator or controller? The channel receives its actuating value from an external room thermostat.
	Heating controller	The channel receives the room temperature over the bus and generates the actuating value independently by means of an internal controller. See chapter: Parameters for the heating actuator
Type of actuating value	switching	The channel processes: ON/OFF telegrams.
	continuous	Percent telegrams 0-100%
Include in summer mode	no	Should the channel remain off in
	yes	the summer mode?
Activate valve protection		This function prevents the valve from seizing and is executed if the valve position has not changed for 7 days. When this function is executed, the valve is moved to the opposite position for 6 minutes.
	no	No valve protection.
	yes	Valve protection is active.
Valve protection disable		Valve protection is:
telegram	1 = Block (standard)	blocked with a 1.
	0 = Block	blocked with a 0.

Designation	Values	Description
Monitor actuating value	no	Should whether the room
	yes	thermostat regularly transmits an
	-	actuating value being monitored?
		A thermostat malfunction can be
		detected quickly in this way and
		an emergency program started.
Activate forced-operation	no	No forced-operation function.
function		
	yes	Opens the Forced-operation
		parameter page.

6.3.3.2 Channel characteristics

Table 12

Designation	Values	Description
Time for one actuation cycle	2, 3, 5, 7, 10 , 15, 20, 30 min	For "continuous" actuating value. An actuation cycle consists of a switching-on and a switching-off process and forms a PWM period.
		Examples: - Actuating value = 20%, - Time = 10 min. means: switched on for 2 min. during the actuating cycle of 10 min. (i.e. 20% of actuating cycle) and switched off for 8 min.
		- Actuating value = 70% / time = 10 min. means: 7 min. on / 3 min. off. See appendix: PWM cycle
Actuator direction of operation	Standard: 1 = Open valve (Theben actuator)	Standard. Valve closed when de-energised.
	Inverted: 0 = Open valve	Special inverted valve types. Valve open when de-energised.
Minimum actuating value	0% , 5%, 10%, 20%, 30%	Lowest permissible actuating value
Maximum actuating value	50%, 60%, 70%, 80%, 90% , 100%	Highest permissible actuating value. A highest value of 90% extends the service life of thermal actuators. A highest value of 100% reduces the number of switching cycles

Designation	Values	Description
Actuating value when value violates the min./max. actuating value		Restriction when a room thermostat receives an actuating value that is less than the minimum actuating value:
	0% or 100 %	Actuate channel with 0% or 100%
	Use set actuating values	Restrict values to maximum and minimum actuating values. For example, maintaining a minimum actuating value of 10% can be practical for the correct base temperature of an underfloor heating.
	0 = 0%; otherwise, use set actuating values	If the received actuating value is = 0, accept this value and close the valve. Other values are restricted in acc. with the configured minimum and maximum actuating values: Received values > 0 % and < min. actuating value are replaced with the minimum actuating value. In the same way, values > max. actuating value are replaced with the set maximum actuating value.
	< Min. actuating value = 0 %, otherwise scale.	Actuating values below the minimum actuating values are interpreted as 0 %. Values above are scaled in proportion to the range between the min. actuating value and 100 %.
Send current actuating value	With change of 1 %, 2 %, 3 %, 5 %, 7 %, 10 %, 15 %	After what percentage change* in the actuating value is the new value to be transmitted?

^{*}Change since last transmission.

Designation	Values	Description
Send current actuating value	not cyclical, only in the event	Send when or at what interval?
cyclically	of change,	
	Every 2 min., every 3 min.	
	Every 5 min., every 10 min.,	
	every 15 min., every 20 min.,	
	every 30 min., every 45 min.,	
	every 60 min.	
Take channel H1 into account	no	Should the actuating value for
for highest actuating value	yes	channel 1 be used for
		determining the highest actuating
		value of all channels?
Take channel H1 into account	no	Should the supply pump be
for pump control	yes	switched on in case of heat
	•	requirement in channel 1?

6.3.3.3 Emergency program

Response to actuating value loss to ensure frost protection or minimum comfort in event of control failure.

Table 13

Designation	Values	Description
Actuating value for emergency	fixed	The valve is energised by a fixed
program is		actuating value continuously.
		See below: Fixed emergency
		program in winter mode.
	Outside temperature dependent	
		The valve is energised on the
		basis of the outside temperature
		and in this way is opened only
		when it is really necessary.
Actuat	ing value for emergency program i	
Fixed emergency program in		Fixed actuating value that should
winter mode	30 %, 40 %, 50 %	replace the actuating value of the
		thermostat until it is available
		again.
Actuating value	for emergency program is tempera	ture-dependent
Emergency program active when		If the outside temperature drops
outside temperature below	10 °C	below the said value, the valve
		opens.
Max. actuating value in	10 %, 20 %	What should be the maximum
emergency program	<i>30</i> %, 40 %, <i>50</i> %	heating level in the emergency
		program?
Fixed emergency program with		Fixed valve setting if neither the
failure of outside temperature.	30 %, 40 %, 50 %	actuating value nor the outside
		temperature can be received.

6.3.3.4 Forced operation

Table 14

Designation	Values	Description
Actuating value in forced-	0 % to 100% in increments of	Set actuating value to control the
operation mode	10%	valve in forced-operation mode.
		This is not restricted by the
		minimum or the maximum
		actuating value.
Forced-operation telegram	1 = Forced operation (standard)	Forced operation is activated
		with an ON telegram
	0 = Forced operation	Inverted: Forced operation is
		activated with an OFF telegram

6.3.4 Parameters for the heating controller

6.3.4.1 HMG 6 T Channel H1 Configuration options

Table 15

Designation	Values	Description
Channel function		Should the channel be used as an
		actuator or controller?
	Heating actuator	The channel receives its
		actuating value from an external
		room thermostat.
	Heating controller	The channel receives the room
		temperature over the bus and
		calculates the actuating value
		independently by means of an
		internal controller.
		See chapter: Parameters for the
		heating actuator
Include in summer mode	no	Should the channel remain off in
	yes	the summer mode?
Execute valve protection		This function prevents the valve
		from seizing and is executed if
		the valve position has not
		changed for 7 days. When this
		function is executed, the valve is
		moved to the opposite position
		for 6 minutes.
	always	Valve protection is permitted at
		any time.
		X7.1
	only in comfort mode	Valve protection is permitted
	only in standby mode	only during the operating mode
Monitor actual value	only in night mode	selected here.
Monttor actual value	no	No monitoring.
	yes	The actual value (room
		temperature) is monitored and an
		emergency program can be
		configured.
Activate forced-operation	no	No forced-operation function.
function		
	yes	Opens the Forced-operation
		parameter page.

6.3.4.2 Settings

Table 16

Designation	Values	Description
CONTROL	Standard	For simple applications
		(heating control only).
	User-defined	Enables selection of control
		functions.
Control functions used		User-defined control.
	Heating control only	Heating mode only.
	Heating and cooling	An additional cooling system will be controlled (object 8).

6.3.4.3 Heating control

Table 17

Designation	Values	Description
Setting the control parameters	Via system type	Standard application
	user-defined	Professional use: P/PI control
		self-configure
System type		PI control with:
	Radiator heating system	Integrated time = 90 minutes
		Bandwidth = 2.5 k
	Underfloor heating	Integrated time = 30 h
		Bandwidth = 4 k
Send heating actuating value		After how much % change* in
cyclically		the actuating value is the new
	With change of 3 %	
		Small values increase control
		accuracy but also the bus load.
	With change of 10 %	
	With change of 15 %	
Cyclical Send heating actuating	not cyclical, only in the event of	
value cyclically		actuating value to be sent
	Every 2 min, every 3 min.	(regardless of changes)?
	Every 5 min, every 10 min.	
	Every 15 min, every 20 min.	
	Every 30 min, every 45 min.	
	Every 60 min.,	

Designation	Values	Description	
	User-defined parameter		
Proportional band of heating	1 K, 1.5 K, 2 K , 2.5 K, 3 K	Professional setting for adapting	
control	3.5 K, 4 K, 4.5 K	control response to the room.	
	5 K, 5.5 K, 6 K	Small values cause large changes	
	6.5 K, 7 K, 7.5 K	in actuating values, larger values	
	8 K, 8.5 K	cause finer actuating value	
		adjustment.	
Integrated time of the heating	pure P control	The integrated time determines	
control	15 min, 30 min, 45 min.	the reaction time of the control.	
	60 min, 75 min, 90 min.	It establishes the increase by	
	105 min, 120 min, 135 min.	which the actuating value from	
	150 min, 165 min, 180 min.	the controller is raised in	
	195 min, 210 min, 4 h, 5 h, 10 h	addition to that from the P-term.	
	15 h, 20 h, 25 h, 30 h, 35 h	The I-term remains active for as	
		long as there is a control	
		deviation. The I-term is added to	
		the P-term.	

^{*}Change since last transmission

6.3.4.4 Setpoint values

Table 18

Designation	Values	Description
Base setpoint value after loading	<i>18</i> ° <i>C</i> , <i>19</i> ° <i>C</i> , <i>20</i> ° <i>C</i> ,	Output setpoint value for
the application	21 °C , 22 °C, 23 °C,	temperature control.
	24 °C, 25 °C	
Reduction in standby mode	0.5 K, 1 K, 1.5 K	Example: With a base setpoint
(during heating)	2 K, 2.5 K, 3 K	value of 21°C in the heating
	3.5 K, 4 K	mode and a
	,	reduction of 2 K, controls
		HMG 6 T with a setpoint value
		of $21 - 2 = 19^{\circ}$ C.
Reduction in night mode (during	3 K, 4 K, 5 K	By what value should the
heating)	6 K, 7 K, 8 K	temperature be reduced in night
		mode?
Setpoint value for frost	3 °C, 4 °C, 5 ° C	Preset temperature for frost
protection operation (during	6 °C, 7 °C, 8 °C,	protection operation in heating
heating)	9 °C, 10 °C	mode
		(Heat protection operation
		applies in cooling mode).
Setpoint offset only applies	only in comfort mode	Setpoint value adjustment:
		Is only considered in the selected
	With comfort and standby	mode and is ineffective in all
	mode	operation modes.
	With comfort, standby and	
	night mode	

Continuation:

Designation	Values	Description
Current setpoint value in		Feedback of current setpoint
comfort mode		value via the bus:
	Sends actual value (heating <	The setpoint value actually being
	> cooling)	used for control is always sent
		(= Current setpoint value).
		Example with Base setpoint value 21°C and Dead zone 2 K:
		During heating and cooling,
		21°C and base setpoint value +
		dead zone are sent respectively
		$(21^{\circ}\text{C} + 2 \text{ K} = 23^{\circ}\text{C})^{-1}$
	Transmits average value	Same value in comfort operation
	Transmits average value between heating and cooling	mode during both heating and
	between nearing and cooling	cooling operation, i.e.:
		Base setpoint value + half dead
		zone are transmitted to prevent
		occupants being inconvenienced.
		Example with Base setpoint
		value 21°C and dead zone of 2K: Mean value= 21°+1 K =22°C
		Although control takes place at
		21°C
		or 23°C
Cyclical transmission of current		How often should the currently
setpoint value		valid setpoint value be sent?
	not cyclical, only in the event	Only send in the event of a change.
	of change	Change.
	Every 2 min.	Cyclical transmission
	Every 3 min.	
	Every 5 min.	
	Every 10 min.	
	Every 15 min.	
	Every 20 min.	
	Every 30 min.	
	Every 45 min. Every 60 min.	
	LIMITS	
Maximum valid setpoint offset		Limits the possible setting range
. and stop our office		for the setpoint offset function.
		Applicable for the received
		values above object 1 (manual
		setpoint offset).

Continuation:

Designation	Values	Description
Minimum valid base setpoint	5°C, 6°C, 7°C, 8°C,	If a base setpoint value received
value		by object 0 is lower than the set
	13°C, 14°C, 15°C,16°C	value, it will be limited to this
	17°C, 18°C, 19 °C, 20 °C	value.
Maximum valid base setpoint	20 °C, 21°C, 22 °C	If a base setpoint value received
value	23°C, 24 °C, 25°C	by object 0 is higher than the set
	27 °C, 30 °C, 32 ° C	value, it will be limited to this
		value.

6.3.4.5 Cooling control

Table 19

Designation	Values	Description	
Setting the control parameters	Via system type	Standard application	
	user-defined	Professional use: Configure P/PI controller yourself	
System type	Cooling surface	PI control with: Integrated time = 240 minutes Bandwidth = 5 K	
	Fan coil unit	Integrated time = 180 minutes Bandwidth = 4 k	
	User-defined control parameter		
Proportional band of the cooling control		control response to the room. Large values cause finer changes	
	6.5 K, 7 K, 7.5 K 8 K, 8.5 K	to the actuating value with the same control deviation and more precise control than smaller values.	
Integrated time of the cooling control	pure P control	See appendix temperature control	
	15 min, 30 min, 45 min 60 min, 75 min, 90 min 105 min, 120 min, 135 min 150 min, 165 min, 180 min 195 min, 210 min, 4 h, 5 h, 10 h 15 h, 20 h, 25 h, 30 h, 35 h	The integrated time determines the reaction time of the control. It establishes the increase by which the actuating value from the controller is raised in addition to that from the P-term. The I-term remains active for as long as there is a control deviation. The I share is added to the P share.	
Send cooling actuating value		After how much % change* in the actuating value is the new value to be sent. Small values increase control accuracy and also the bus load.	
Cyclical Send cooling actuating value	not cyclical, only in the event of change Every 2 min., every 3 min. Every 5 min, every 10 min. Every 15 min, every 20 min. Every 30 min, every 45 min. Every 60 min.	How often is the current cooling actuating value to be sent (regardless of changes)?	

Continuation:

Designation	Values	Description
Changeover between heating	automatic	HMG 6 T automatically switches
and cooling		to cooling mode when the actual
		temperature is above the setpoint
		value.
	via object	The cooling mode can only be
		activated on the bus via object 9
		(1= cool).
		Cooling mode remains off for as
		long as this object is not set.
Output of the cooling actuating	on separate object	For 4-pipe systems:
value*	(object 8)	The heating actuating value is
		sent to object 7 and the cooling
		actuating value to
		object 8.
	Together with heating actuating	~ ~ ~
	value (object 7)	The actuating value is always
		sent to object 7, independent of
		whether heating or cooling mode
		is active.

^{*} Only when changeover between heating and cooling via object.

6.3.4.6 Cooling setpoint values

Table 20

Designation	Values	Description
Dead zone between heating and	0 K	Specifies the buffer zone
cooling*	1 K	between setpoint values in
	2 K	heating and cooling modes.
	3 K	The dead zone is expanded
	4 K	through hysteresis in switching
	5 K	(2 point) control.
	6 K	See glossary: Dead zone.
		0 K: Only for 2-pipe systems, i.e. parameter: <i>switchover between</i>
		heating and cooling = via object
		and output of cooling actuating
		value = together with heating
		actuating value.
Increase in standby mode	0 K, 0.5 K, 1 K, 1.5 K	The standby temperature is
(during cooling)		increased in the cooling mode
	3.5 K, 4 K, 5 K	
Increase in night mode (during	3 K, 4 K, 5 K	See increase in standby mode
cooling)	6 K, 7 K, 8 K	
Setpoint value for heat	42 °C (does not represent heat	Heat protection represents the
protection mode (during cooling)		maximum permitted temperature
		for the controlled room. It
		performs the same function
	35 °C	8 8
		protection mode during heating,
		e.g. saves energy while
		prohibiting non-permitted
		temperatures.

^{*} According to each type of control: "+ Heating hysteresis" or

[&]quot;+ Heating hysteresis" + cooling hysteresis"

6.3.4.7 Operating mode

Table 21

Designation	Values	Description
Operating mode after reset	Frost protection	Operating mode after start-up or
	temperature reduction at night	reprogramming
	Standby	
Town a of muse on a game or	Comfort	The process conservative the
Type of presence sensor (to obj. 4)		The presence sensor activates the comfort operating mode
	Presence detector	Comfort operation mode as long as the presence object is set.
	Presence buttons	 If the operation mode object (object 3) is called up again after setting the presence object the new operating mode will be accepted and the state of the presence object ignored. If the presence object is set during night / frost operation, it is reset after the configured comfort extension finishes (see below). The presence object is not reported on the bus
Comfort extension by presence keys in night mode*	none	Telegrams from presence button are not considered.
	30 min	Party switching:
		This allows the HMG 6 T to
	1.5 hours	change via the presence object
		from
	2.5 hours	night/frost mode to comfort
		mode again for a set length of
	3.5 hours	time.
		The time limit is omitted if the device was previously in standby mode. Comfort operation is only cleared with the next manual or bus controlled change of operation mode.

Continuation:

Designation	Values	Description
Cyclical transmission of current	not cyclical, only in the event of	How often should the current
operating mode	change	operating mode be sent?
	Every 2 min, every 3 min.	
	Every 5 min, every 10 min.	
	Every 15 min, every 20 min.	
	Every 30 min, every 45 min.	
	Every 60 min.	

6.3.4.8 Channel characteristics

Table 22

Designation	Values	Description
Channel processes actuating value for		Only for heating and cooling mode and <i>Output of cooling</i> actuating value = to separate object.
	Heating	Channel responds to the heating actuating value
	Cooling	Channel responds to the cooling actuating value
		Only for heating and cooling mode and <i>Output of cooling</i> actuating value = together with heating actuating value.
	Heating or cooling	Channel responds to the actuating value independently of the parameter
Time for one actuation cycle	2, 3, 5, 7, 10 , 15, 20, 30 min	For "continuous" actuating value.
		An actuation cycle consists of a switching-on and a switching-off process and forms a PWM period.
		Examples: - Actuating value = 20%, - Time = 10 min. means: switched on for 2 min. during the actuating cycle
		of 10 min. (i.e. 20% of actuating cycle) and switched off for 8 min.
		- Actuating value = 70%, time = 10 min. means: 7 min. on / 3 min. off.
Actuator direction of operation	Standard: 1 = Open valve	See appendix: PWM cycle Standard.
	(Theben actuator)	Valve closed when de-energised.
	Inverted: 0 = Open valve	Special inverted valve types. Valve open when de-energised.
Minimum actuating value	0 %, 5%, 10%, 20%, 30%	Lowest permissible actuating value

Continuation:

Designation	Values	Description
Maximum actuating value	50%, 60%, 70%, 80%, 90%, 100%	Highest permissible actuating value. A highest value of 90% extends the service life of thermal actuators. A highest value of 100% reduces the number of switching cycles
Actuating value when value violates the min./max. actuating value		Restriction when a room thermostat receives an actuating value that is less than the minimum actuating value:
	0% and/or 100 %	Actuate channel with 0% or 100%
	Use set actuating values	Restrict values to maximum and minimum actuating values. For example, maintaining a minimum actuating value of 10% can be practical for the correct base temperature of an underfloor heating.
	0 = 0%, otherwise use set actuating values	If the received actuating value is = 0, accept this value and close the valve. Other values are restricted as per the configured minimum and maximum actuating values.
	< Min. actuating value = 0 %, otherwise scale.	Actuating values below the minimum actuating values are interpreted as 0 %. Values above are scaled in proportion to the range between the min. actuating value and 100 %.
Take channel H1 into account for highest actuating value	no yes	Should the actuating value for channel 1 be used for determining the highest actuating value of all channels?
Take channel H1 into account for pump control	no yes	Should the supply pump be switched on in case of heat requirement in channel 1?

^{*}Change since last transmission.

6.3.4.9 Channel H1- H6 monitoring

Central settings for monitoring the actuating value (heating actuator), actual value (heating controller) and outside temperature (emergency program).

Table 23

Designation	Values	Description
Monitoring time	5 min.	Start emergency program if the
	10 min.	relevant data were not received
	20 min.	within the configured time.
	30 min.	
	60 min.	
Status of monitoring	Report only in the event of	Do not send any telegrams
	malfunction	during normal operation, only in
		the event of failure.
	Always report	Status will also be sent when
		there is no fault.
Send status cyclically	no	Send status messages cyclically?
	yes	
Cycle time	Every 2 min, every 3 min.	At what interval should the
	Every 5 min., every 10 min.,	status be sent?
	every 15 min., every 20 min.,	
	every 30 min.	

6.3.4.10 HMG 6 T pump

Table 24

Designation	Values	Description
Only switch on pump when at least		Additional function for devices manufactured as of October 2016. Strategy for pump control.
	one input variable > 0%	Standard (as prior to October 2016).
		The pump is switched on as soon as the input variable of a channel is over 0%.
	one valve is actuated (Open)	As above, however, the pump will always be switched off when, due to the PWM cycle, all valves are closed.
Switch-off delay for pump		The pump should:
	No switch-off delay	switch off immediately
	2 min., 3 min., 5 min., 7 min., 10 min., 15 min., 20 min., 30 min.	Continue running for a set length of time.
Send pump control cyclically	No, only in the event of change	How should the switch
	Cyclically and in the event of change	A A
Send highest actuating value cyclically (If continuous	No, only in the event of change	do not send cyclically.
actuating value used)	Cyclically and in the event of change	On change (ON-OFF, OFF-ON) and send cyclically.
Cycle time	Every 2 min, every 3 min.	At what interval should the
	Every 5 min., every 10 min.,	switch telegram for the pump be
	every 15 min., every 20 min.,	sent?
	every 30 min.	

7 Typical applications

These typical applications are designed to aid planning and are not to be considered an exhaustive list. It can be extended and updated as required.

7.1 Simple control with one HMG 6 T channel as heating actuator

Channel 1 is configured as a heating actuator and is controlled by a VARIA room thermostat. Presence and window status are sensed by a presence detector and a window contact. Summer mode is selected manually by means of a switch.

7.1.1 Devices:

- HMG 6 T (Order no. 4930240)
- VARIA 826 / 826 S KNX (Order no. 8269200, 8269210, 8269211)
- TA 2 (Order no. 4969202)
- Compact office EIB (Order no. 2019200)

7.1.2 Overview

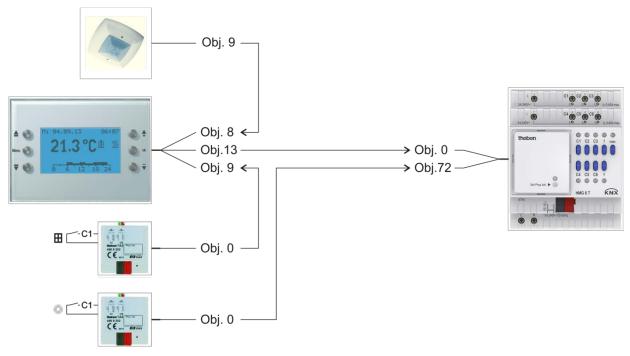


Figure 1

7.1.3 Objects and links

Table 25:

No.	Compact Office	No	Varia	Comment
NO.	Object name	No.	Object name	Comment
9	Presence output	8	Input for presence signal	Energy-saving function.

Table 26:

No.	TA 2 window contact H	No.	Varia	Comment
NO.	Object name	NO.	Object name	Comment
				A window contact is connected to
	Channel 1 switching	9	Input for window contact	C1.
				On = Window is open
0				Off = Window is closed.
				When the window is opened, the
				VARIA RTR changes to the frost
				protection operating mode.

Table 27:

No.	TA 2 summer mode 🗱	No.	HMG 6 T	Comment
INO.	Object name	INO.	Object name	Comment
				A switch is connected to C1.
0	Channel 1 switching	72	Summer mode ON/OFF	On = Summer mode
				Off = Winter mode.

Table 28:

NIa	Varia	No.	HMG 6 T	Comment
No.	Object name	NO.	Object name	Comment
13	Heating actuating value	0	Continuous actuating value	Actuating value for the heating channel.

7.1.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

Table 29: HMG 6 T

Parameter page	Parameter	Setting
General	Type of basic module	HMG 6 T
HMG 6 T Channel H1:	Channel function	Heating actuator
Configuration options	Type of actuating value	Continuous
	Include in summer mode	yes

Table 30: VARIA

Parameter page	Parameter	Setting
RTR setting	CONTROL	Heating control only
	Objects for determining the	New: operating mode, presence,
	operating mode	window status.
	Type of presence sensor	Presence detector
Heating control	Number of heating stages	Only one heating stage
	Type of control	Continuous control

Table 31: Compact Office EIB

Parameter page	Parameter	Setting
General data	select	Master in single unit operation
	Presence output	active
	Normal or test operation mode	Standard operation
Presence output	Presence switch-on delay	5 minutes
	Behaviour at start of presence	Send ON telegram
	Behaviour at end of presence	Send OFF telegram

Table 32: TA 2 for window contact.

Parameter page	Parameter	Setting
Channel 1	Channel function	Switch/push button
	Debounce time	100 ms
	Object type	Switching (1-bit)
	Response to rising edge	ON (OFF*)
	Response to falling edge	OFF (ON*)
	Response after restoration of	update
	the bus supply	

* Depending on type of window contact.
The details in brackets refer to the following case:

Window closed → contact closed

Table 33: TA 2 for summer mode.

Parameter page	Parameter	Setting
Channel 1	Channel function	Switch/push button
	Debounce time	100 ms
	Object type	Switching (1-bit)
	Response to rising edge	ON
	Response to falling edge	OFF
	Send telegram cyclically	yes
	Cycle time	60 minutes
	Response after restoration of	update
	the bus supply	

7.2 School location : HMG 6 T as heating controller with automatic summer mode.

The HMG 6 T basic module controls the heating in 6 classrooms.

The room temperature is determined by an Amun 716* CO2 sensor.

The HVAC operating mode is controlled centrally by a timer.

If a window is opened, control changes to the frost protection mode.

The comfort mode is activated by a presence button.

To save energy costs, control should change over to the summer mode automatically when the weather is mild.

This is achieved with the aid of a Meteodata 139 weather data receiver.

7.2.1 Devices:

- HMG 6 T (Order no. 4930240)
- Amun 716 KNX (Order no. 7169200)
- TA 2 (Order no. 4969202)
- TR 648 top2 RC KNX (Order no. 6489212)
- Meteodata 139 KNX (Order no. 1399200)

Updated: Jul-20 (subject to change) Page 52 of 64

^{*} Additional functions of the CO^2 sensor (ventilation control etc.) are described in detail in the Amun 716 KNX manual and are not discussed here.

7.2.2 Overview

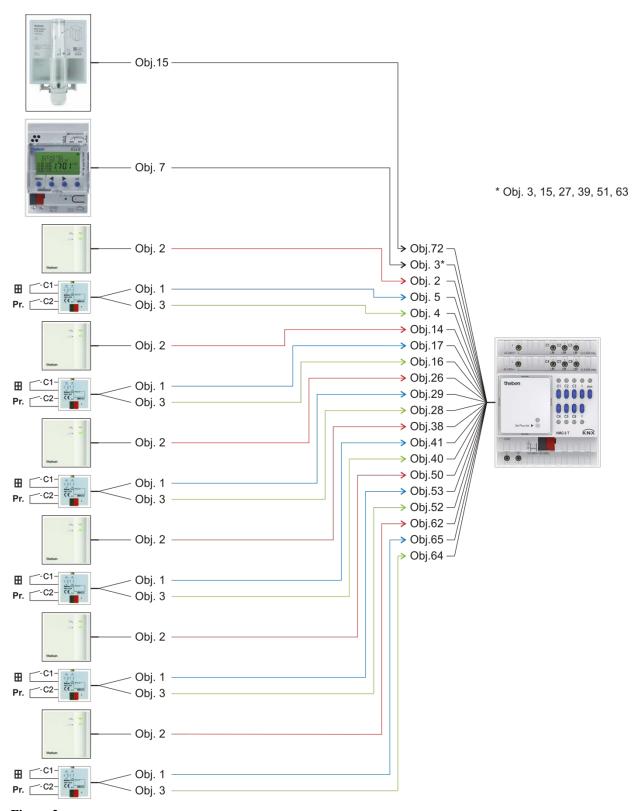


Figure 2

7.2.3 Objects and links

Table 34:

No.	Meteodata 139	No.	HMG 6 T	Comment
NO.	Object name	10.	Object name	Comment
15	Summer mode heating message	72	Summer mode ON/OFF	The Meteodata 139 activates the summer mode if all conditions are met.

Table 35:

No.	TR 648 top 2 RC KNX	No.	HMG 6 T	Comment
NO.	Object name	NO.	Object name	Comment
7	HVAC switching channel	3 15 27 39 51 63	Operating mode preset Channel H1	Central function for specifying the operating mode in all rooms. All objects share a common group address.

Table 36: Rooms 1-6.

No.	6x Amun 716	No.	HMG 6 T	Comment
NO.	Object name	NO.	Object name	Comment
2	Temperature value	2	Actual value	Current room temperature in room 1
2	Temperature value	14	Actual value	Current room temperature in room 2
2	Temperature value	26	Actual value	Current room temperature in room 3
2	Temperature value	38	Actual value	Current room temperature in room 4
2	Temperature value	50	Actual value	Current room temperature in room 5
2	Temperature value	62	Actual value	Current room temperature in room 6

Table 37: 6x TA 2, rooms 1-6.

No.	TA 2	No.	HMG 6 T	Comment
INO.	Object name	NO.	Object name	Comment
1	Channel 1 switching	5	Window position	Window position and presence
3	Channel 2 switching	4	Presence	status for room 1
1	Channel 1 switching	17	Window position	Window position and presence
3	Channel 2 switching	16	Presence	status for room 2
1	Channel 1 switching	29	Window position	Window position and presence status for room 3
3	Channel 2 switching	28	Presence	
1	Channel 1 switching	41	Window position	Window position and presence
3	Channel 2 switching	40	Presence	status for room 4
1	Channel 1 switching	53	Window position	Window position and presence
3	Channel 2 switching	52	Presence	status for room 5
1	Channel 1 switching	65	Window position	Window position and presence
3	Channel 2 switching	64	Presence	status for room 6

7.2.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

Table 38: HMG 6 T

Parameter page	Parameter	Setting
General	Type of basic module	HMG 6 T
HMG 6 T Channel H1-H6:	Channel function	Heating controller
Configuration options	Include in summer mode	yes
Settings	CONTROL	Standard
select	Type of presence sensor	Presence buttons

Table 39: Meteodata 139 KNX

Parameter page	Parameter	Setting
Summer mode	These parameter settings depend	on the local circumstances and
	the particular user requirements.	

Table 40: TR 648 top 2 RC KNX

Parameter page	Parameter	Setting
Switching channel C1	Telegram type C1.1	HVAC operating mode

Table 41: 6x Amun 716

Parameter page	Parameter	Setting
Measured values	Transmit temperature in the	0.2°C
	event of change of	

Table 42: 6x TA 2

Parameter page	Parameter	Setting
Channel 1	Channel function	Switch/push button
	Debounce time	100 ms
	Object type	Switching (1-bit)
	Response to rising edge	ON (OFF*)
	Response to falling edge	OFF (ON*)
	Response after restoration of	update
	the bus supply	
Channel 2	Channel function	Switch/push button
	Debounce time	100 ms
	Object type	Switching (1-bit)
	Response to rising edge	ON
	Response to falling edge	none
	Response after restoration of	none
	the bus supply	

^{*} Depending on type of window contact. The details in brackets refer to the following case: Window closed → contact closed.

8 APPENDIX

8.1 Determining the current operating mode

The current setpoint value can be adjusted to the relevant requirements via the choice of operation mode.

The operating mode can be specified by objects 3..5.

The current operating mode can be specified as follows:

Table 43

Operating mode preset Object 3	Presence Object 4	Window status Object 5	Current operating mode (object 6)
any	any	1	frost / heat protection
any	1	0	Comfort
Comfort	0	0	Comfort
Standby	0	0	Standby
Night	0	0	Night
frost / heat protection	0	0	frost / heat protection

8.1.1 Determining the setpoint value

8.1.1.1 Calculating the setpoint value in heating operation

See also: Base setpoint value and current setpoint value

Table 44: Current setpoint value during heating

select	Current setpoint value
Comfort	Base setpoint value +/- setpoint offset
Standby	Base setpoint value +/- setpoint adjustment – reduction in standby mode
Night	Base setpoint value +/- setpoint adjustment – reduction in standby mode
Frost / heat	configured setpoint value for frost protection mode
protection	

Example:

Heating in comfort operating mode.

Parameter page	Parameter	Setting
Setpoint values	Base setpoint value after	21 °C
	loading the application	
	Reduction in standby mode	2 K
	(during heating)	
	Maximum valid setpoint offset	+/- 2 K

The setpoint value was previously increased by 1 K via object 1.

Calculation:

Current setpoint value = base setpoint value + manual setpoint offset =
$$21^{\circ}\text{C} + 1\text{K}$$
 = 22°C

If operation is switched to standby mode, the current setpoint value is calculated as follows:

Current setpoint = base setpoint + setpoint offset – reduction in standby mode =
$$21^{\circ}C + 1 K - 2 K$$
 = $20^{\circ}C$

8.1.1.2 Calculating the setpoint value in the cooling mode

Table 45: current setpoint value during cooling

select	Current setpoint value
Comfort	Base setpoint value + Setpoint offset + dead zone
Standby	Base setpoint value + setpoint offset + dead zone + increase in standby mode
Night	Base setpoint value + setpoint offset + dead zone + increase in night mode
Frost / heat	configured setpoint value for heat protection mode
protection	

Example:

Cooling in comfort operating mode.

The room temperature is too high and the HMG 6 T has switched to the cooling mode

Parameter page	Parameter	Setting
Setpoint values	Base setpoint value after	21 °C
	loading the application	
	Maximum valid setpoint offset	+/- 2 K
	Dead zone between heating and	2 K
Cooling setnoint values	cooling	
Cooling setpoint values	Increase in standby mode	2 K
	(during cooling)	

The setpoint value was previously lowered by 1 K via object 1.

Calculation:

Current setpoint value = base setpoint value + manual setpoint offset + dead zone =
$$21^{\circ}\text{C} - 1\text{K} + 2\text{ K}$$
 = 22°C

Changing to standby mode causes a further increase in the setpoint value (energy saving) and gives rise to the following setpoint value.

Setpoint value = base setpoint value + setpoint offset + dead zone + increase in standby mode =
$$21^{\circ}C$$
 - 1 K + 2 K + 2 K = $24^{\circ}C$

8.2 Setpoint offset

The current setpoint value can be adjusted in the HMG 6 T via object 1 *manual setpoint offset*. In this case, the setpoint value is changed by sending the desired offset to object 1. This involves the differential (may be preceded by a minus sign) being sent in EIS5 format to object 1.

The differential between the setpoint offset and Basissollwert is sent by object 10 at each change (e.g. - 1.00).

The offset limits are set on the *Setpoint values* parameter page via the *Maximum valid setpoint offset* parameter.

The offset is always in relation to the Basissollwert and not the current setpoint value.

Example Base setpoint value of 21°C:

If a value of 2.00 is received by object 1, the new setpoint value was calculated as follows: $21^{\circ}\text{C} + 2.00\text{K} = 23.00^{\circ}\text{C}$.

To then bring the setpoint value to 22° C, the differential to the programmed base setpoint value (here 21° C) is resent, in this case $1.00 \text{ K} (21^{\circ}\text{C} + 1.00 \text{ K} = 22^{\circ}\text{C})$

8.3 Base setpoint value and current setpoint value

The **base setpoint value** is the standard temperature for the comfort mode and the reference temperature for reduction in standby and night modes.

The programmed basic setpoint value (see base setpoint value after downloading the application) is stored in object 0 and can be changed at any time via the bus by sending a new value to object 0 (EIS5).

The **current setpoint value** is the value that actually is used for control. It is the result of all the reductions or increases associated with the operating mode and implemented by the control function.

Example:

At a base setpoint value of 22° C and a reduction in night mode of 4K, the current setpoint value (in night mode) is: 22° C - 4K = 18°C. During the day (in comfort mode), the current setpoint value is 22° C (provided that the cooling mode is not active).

The formation of the current setpoint value due to the basic setpoint value can be observed in the block diagram on the next page:

The base setpoint value, specified via object 0, is on the left.

The current setpoint value is on the right, i.e. the value upon which the room temperature is effectively controlled.

As you can see in the block diagram, the current setpoint value depends on the operating mode and the control function. selected.

The base setpoint value limits prevent an incorrect base setpoint value from being specified to object 0. These are the following parameters:

- Minimum valid base setpoint value
- Maximum valid base setpoint value

If because of a setpoint offset the setpoint value is outside the programmed values for frost and heat protection, it is restricted to these values by the safety limits.

See also: Setpoint value calculation.

Updated: Jul-20 (subject to change)

8.4 Short-circuit and overcurrent shutdown

The channel blocks H1-H3 and H4-H6 are always protected by a reversible safety device whose state is monitored.

After the safety device trips, all 3 channels are shut off for 20 seconds, the LED indicating a malfunction flashes at a frequency of 5 Hz and the corresponding "Overcurrent / short circuit" object is set. Following this, all 3 channels are switched on in succession for testing.

If the safety device trips again, the associated channel is switched off, the channel LED flashes at a frequency of 5 Hz, the "Overcurrent / short circuit" object for the affected group remains set (obj. 73 and 74)

Operation of the other channels remains unaffected.

If the safety device does not trip again when tested, it is assumed that an overload occurred. The LED indicating a malfunction is illuminated continuously, the "Overcurrent / short circuit" object for the associated group is reset (obj. M3 and 74).

Operation of all 3 channels remains unaffected.

If no further malfunction occurs during the next 24 hours in this condition, the LED indicating a malfunction goes out.

If 1-4 malfunctions occur again during the 24 hours following the initial overload, the LED remains on 24 hours again.

If more than 5 malfunctions occur during the 24 hours following the initial overload, all 3 channels are switched off, the LEDs for the channels flash at a frequency of 2 Hz, the LED indicating a malfunction is illuminated continuously, the "Overcurrent / short circuit" object is set.

8.5 Load distribution, connection of devices

By combining 3 channels on one safety device (see above), it is also possible to distribute loads asymmetrically over the 3 channels as long as the total current of 0.45 A is not exceeded.

Example:

C1 = 0.025A,

C2 = 0.025A,

C3 = 0.4 A

is permissible

Brief inrush current levels of up to 0.75 A per group are permissible (max. 10 s).

Depending on the ambient temperature and air circulation at the installation location, the safety device may trip in the event of longer-lasting current loads between 0.45 A and 0.75 A per group.

Updated: Jul-20 (subject to change)

8.6 Conversion of percentages to hexadecimal and decimal values

Table 46

Percentage	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
value											
Hexadecimal	00	1a	33	4D	66	80	99	В3	CC	E6	FF
Decimal	00	26	51	77	102	128	153	179	204	230	255

All values from 00 to FF hex. (0 to 255 dec.) are valid.

9 Release notes

Devices starting from date of	Changes
manufacture	
2027	The pump is now also activated when the controller is in cooling
	mode (previously only in heating mode).

Date of manufacture = Year, week **1731** = 20**17**, KW**31**