Dimmer actuators of the MIX2 series DMG 2 T, Extension module DME 2 T, Booster DMB 1 T
 FIX1 DM 2 T
 FIX2 DM 4 T

DMG 2 T	4930270
DME 2 T	4930275
DMB 1 T	4930279
DM 2 T	4940270
DM 4 T	4940275

Contents

1 FUNCTIONAL CHARACTERISTICS 4
2 MIX2 AND FIX1/FIX2 DEVICES 5
3 MIX AND MIX2 DEVICES 5
3.1 Operation 6
4 TECHNICAL DATA 7
4.1 IMPORTANT INFORMATION 8
5 THE APPLICATION PROGRAM "MIX2 V1.6" 9
5.1 Selection in the product database 9
5.2 COMMUNICATION OBJECTS 10
5.2.1 Channel-related objects 10
5.2.2 Common objects 14
5.2.3 Description of objects 15
5.3 PARAMETERS 24
5.3.1 Parameter pages 24
5.3.2 General 25
5.3.3 DMG 2 T Channel C1/C2: Function selection 27
5.3.4 Dimming response 30
5.3.5 Dimming value limits 34
5.3.6 Soft switching 35
5.3.7 Locking function 36
5.3.8 Forced operation 37
5.3.9 Scenes 39
5.3.10 Feedback 42
5.3.11 Operating hours counter and service 43
5.3.12 Loss of power and restoration 45
5.3.13 Diagnostic messages 45
6 TYPICAL APPLICATIONS 46
6.1 BEDROOM LIGHTING 46
6.1.1 Devices: 46
6.1.2 Overview 46
6.1.3 Objects and links 47
6.1.4 Important parameter settings 48
7 APPENDIX 49
7.1 UsE OF SOFT SWITCHING FUNCTION 49
7.1.1 General 49
7.1.2 Soft ON for staircase lighting. 49
7.1.3 Entrance lighting 50
7.1.4 Simulation of a daily routine 51
7.1.5 Retriggering and premature switch-off 52
7.1.6 Soft Off telegram during a Soft On process 53
7.1.7 Soft On telegram during a Soft Off process 54
7.2 APPLICATION OF THE FORCED OPERATION FUNCTION 55
7.3 Dimming energy-saving Lamps (ESL) 56
7.3.1 General 56
7.3.2 Selection of RC or L-response: 57
7.3.3 Dimmable energy-saving lamps with RC response (reverse phase control) 58
7.3.4 Dimmable energy-saving lamps with L-response (phase control) 59
7.4 DIM LED LAMPS 60
7.4.1 General 60
7.4.2 Selection of RC or L-response: 60
7.5 4-BIT TELEGRAMS (BRIGHTER/DARKER) 61
7.5.1 Telegram format 4-bit EIS 2 relative dimming: 61
7.5.2 Parameter: "Switching on/off with a 4-bit telegram" 62
7.6 THE SCENES 63
7.6.1 Principle 63
7.6.2 Select and save settings: 64
7.6.3 Enter scenes without telegrams (MIX2 ONLY) 66
7.7 Store light scenes in one button 66
7.7.1 Assignment of group addresses and setting for the object flag 66
7.7.2 Functional description 67
7.8 CONVERSION OF PERCENTAGES TO HEXADECIMAL AND DECIMAL VALUES 67
7.9 MAXIMUM INCANDESCENT LAMP LOAD IN PARALLEL OPERATION AND IN COMBINATION WITH THE DIMMING BOOSTER DMB. 1 T 68
7.10 FUNCTION DIAGRAM 70
8 OPERATING INSTRUCTIONS 71

1 Functional characteristics

- Double universal dimming actuator MIX2
- MIX2 basic module
- For upgrading to maximum of 6 channels
- Dimming range $0-100 \%$
- For dimming incandescent lamps, low voltage and high voltage halogen lamps, dimmable LED retrofit lamps
- Also suitable for dimming dimmable energy-saving lamps via different dimming curves
- Also suitable for controlling fans
- Up to 2 MIX or MIX2 upgrade modules can be connected to a basic module
- Device and KNX bus module can be swapped independently of each other
- Removable KNX bus module enables devices to be changed without reprogramming
- Manual set-up and use of switch actuators is also possible without KNX bus module
- LED switching status indicator for each channel
- Manual operation on device (even without bus connection)
- Dimming output: 400 W/VA per channel or 1×800 W/VA in parallel operation
- Use of the 1-channel DMB 1 T KNX dimming booster can increase dimming output by 300 W/VA.
- Output of up to $2000 \mathrm{~W} / \mathrm{VA}$ possible via max. 4 boosters in parallel operation (C1//C2).
- Automatic load detection (can be deactivated)
- For R, L and C-load

2 MIX2 and FIX1/FIX2 Devices

This manual describes the MIX2 devices and can also be used with devices from the FIX2 Series.

A FIX1 device behaves like a MIX2 basic module.
A FIX2 device behaves like a MIX2 basic module and an extension module of the same type (e.g. blinds actuator) in a common housing.

Devices in the FIX Series (Order No. 494..):

- Cannot be extended
- Cannot be combined

The remaining functions are identical to those in the MIX2 Series.

3 MIX and MIX2 devices

The MIX2 Series consists of the basic modules RMG 4 I, RMG 8 S, RMG 8 T, DMG 2 T, JMG 4 T, JMG 4 T 24V, HMG 6 T + extensions RME 4 I, RME 8 S, RME 8 T, DME 2 T, JME 4 T, JME 4 T 24V, HMG 6 T (04.2014).

Any MiX and MIX2 extension modules can be connected to a MIX2 basic module.

Table 1

Appliance type	Order No.	Designation	Can be used with basic module...	
			in the MIX series	in the MIX2 series
MIX2 basic modules	493...	RMG 4 I, RMG 8 S, RMG 8 T, DMG 2 T, JMG 4 T, JMG 4 T 24V, HMG 6 T.	-	-
MIX2 upgrades	493...	RME 4 I, RME 8 S, RME 8 T, DME 2 T, JME 4 T, JME 4 T 24V, HME 6 T.	no	Yes
MIX basic modules	491...	BMG 6, DMG 2 S, HMG 4, JMG 4 S, RMG 4 S, RMG 4 C-Last, SMG 2 S	-	-
MIX upgrades	491...	BME 6, DME 2 S, HME 4, JME 4 S, RME 4 S, RME 4 C-load, SME 2 S	yes	Yes*

[^0]
3.1 Operation

Every dimmer actuator has a manual button.
When manual mode is activated the dimmer can only be operated with the buttons.
Bus telegrams will not be implemented.
4 buttons and 4 LEDs are available for each channel.
The LEDs shown the current state as a bar display:

The device dims down to 0% in the event of excess temperature or a short circuit in the load.
The buttons call up the following dimming values:

Table 2:

Button 1	Button 2	Button 3	Button 4
25% or OFF	50%	75%	100%

In standard operation:

Pressing a button establishes the desired dimming value.
A status established via the channel button can be overwritten via the bus at any time.

In manual operation with the manual button or Manual object:

If the "manual" function is selected, the associated LED lights up.
Any time-based functions that are running (e.g. soft switching) will be terminated.
The dimming status will be frozen and can only be changed via the channel buttons.
Bus telegrams will not be implemented.
The "Manual" state will be reset during a mains power failure.
After cancelling manual operation already received bus events will not be obtained later.

4 Technical data

Operating voltage KNX	Bus voltage, $\leq 4 \mathrm{~mA}$
Operating voltage	$230 \mathrm{~V} \mathrm{AC} \mathrm{+10} \mathrm{\%} \mathrm{-15} \mathrm{\%}$
Frequency	50 Hz
Standby output	$0.9 \mathrm{~W} / 1,5 \mathrm{~W}^{3}$
Width	4 module / 8 module ${ }^{3}$
Installation type	DIN-rail
Connection type	Terminals screws
Max. cable cross-section	Solid: $0.5 \mathrm{~mm}^{2}(Ø 0.8)$ to $4 \mathrm{~mm}^{2} \mid$ strand with wire end sleeve: $0.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$
Number of channels	$2 / 4^{3}$
Lamp types	Incandescent lamps, low-voltage and high-voltage halogen lamps, dimmable energy saving lamps ${ }^{1}$ and LEDs
Switching capacity per channel	400 W
Switching capacity in parallel operation	800 W
Dimmable switching capacity Energy saving lamps per channel	Trailing edge (RC-Mode): 400 W Leading edge (L-Mode): 80 W
Switching capacity dimmable energy saving lamps in parallel operation	Trailing edge (RC-Mode): 800 W Leading edge (L-Mode): 140 W
Dimmable switching capacity 230 V LED per channel	Trailing edge (RC-Mode): 400 W Leading edge (L-Mode): 60 W
Dimmable switching capacity 230 V LED in parallel operation	Trailing edge (RC-Mode): 800 W Leading edge (L-Mode): 120 W
Min. switching capacity	5 W
Max. line length	100 m
Ambient temperature	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
Protection rating	IP 20
Protection class	II in accordance with EN 60669
DIMMING BOOSTER	
Standby output	0.2 W
Width	1 module
Number of channels	1
Lamp types	Incandescent lamps, low-voltage and highvoltage halogen lamps and LEDs

Increase in switching capacity ${ }^{2}$ for incandescent lamps, low voltage and high voltage halogen lamps for each booster by	300 W
Increase in switching capacity for dimmable 230 V LEDs per booster	45 W
Min. switching capacity	5 W

${ }^{1}$ Only possible without booster.
${ }^{2}$ Dimming outputs $>1000 \mathrm{~W}$ for professional use only
${ }^{3}$ DM 4 T

4.1 Important information

1. The voltage supply (at the fuse box) must be switched off without fail when replacing lamps.
2. The EIB voltage must be switched off when plugging together or separating modules.
3. Connecting dimmers in series or in parallel is not permitted:

ONLY the Booster module is connected in parallel (up to 2 items per channel possible).
4. If C2 boosts the channel C1 (special parallel operation) a total of up to 4 booster modules can be connected and an output of up to 2000 W can be dimmed.
5. Do not install adjustable transformers ahead of the dimmer.
6. Ripple control pulses from electric power plants may cause temporary flickering of the lighting.

5 The application program "MIX2 V1.6"

5.1 Selection in the product database

Manufacturer	Theben AG
Product family	Dimmers
Product type	DMG 2 T
Program name	MIX2 V1.6

The ETS database can be found on our website: www.theben.de/downloads

Table 3

Number of communication objects:	254
Number of group addresses:	254
Number of associations:	255

5.2 Communication objects

The objects are divided into channel-related and common objects

5.2.1 Channel-related objects

Table 4

No.	Object name	Function	Length DPT	Flags			
				C	R	W	T
0	DMG 2 T channel C1	Switching ON/OFF	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
1	DMG 2 T channel C1	Brighter/darker	$\begin{aligned} & 4 \text { bit } \\ & 3.007 \end{aligned}$	C	R	W	-
2	DMG 2 T channel C1	Dimming value	$\begin{aligned} & \hline 1 \text { byte } \\ & 5.001 \end{aligned}$	C	-	W	-
3	DMG 2 T channel C1	Soft switching	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
4	DMG 2 T channel C1	Lock	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	W	-
5	DMG 2 T channel C1	Call up/save scenes	$\begin{array}{\|l\|} \hline 1 \text { byte } \\ 17.001 \\ \hline \end{array}$	C	R	W	-
6	DMG 2 T channel C1	Lock scenes = 1	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \\ & \hline \end{aligned}$	C	R	W	-
		Enable scenes = 1	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	W	-
7	DMG 2 T channel C1	Force = 1	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
		Force $=0$	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
		Dimming value with forced op	$\begin{aligned} & \hline 1 \text { byte } \\ & 5.001 \end{aligned}$	C	R	W	-
		Forced operation	$\begin{array}{\|l\|} \hline 2 \text { bit } \\ 2.001 \\ \hline \end{array}$	C	R	W	-
8	DMG 2 T channel C1	Dimming value limit	$\begin{array}{\|l\|} \hline 1 \text { byte } \\ 5.001 \\ \hline \end{array}$	C	R	W	-
9	DMG 2 T channel C1	Feedback On/Off	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	-	T
10	DMG 2 T channel C1	Feedback in \%	$\begin{aligned} & \hline 1 \text { byte } \\ & 5.001 \end{aligned}$	C	R	-	T
11	DMG 2 T channel C1	Time to next service	$\begin{array}{\|l\|} \hline 2 \text { byte } \\ 7.001 \\ \hline \end{array}$	C	R	W	T
		Operating hours feedback	$\begin{aligned} & \hline 2 \text { byte } \\ & 7.001 \end{aligned}$	C	R	W	T
12	DMG 2 T channel C1	Service required	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	-	T

Continuation:

No.	Object name	Function	Length	Flags			
				C	R	W	T
13	DMG 2 T channel C1	Reset service	$\begin{array}{l\|} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	W	-
		Reset operating hours	$\begin{aligned} & \hline 1 \mathrm{bit} \\ & 1.001 \end{aligned}$	C	R	W	-
14	DMG 2 T channel C1	General error message	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	-	T
15	DMG 2 T channel C1	Short circuit message	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	-	T
16	DMG 2 T channel C1	Excess temperature message	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	-	T
17	DMG 2 T channel C1	Mains power failure	$\begin{array}{l\|} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	-	T
18	DMG 2 T channel C1	Load type message ($R, C / L$)	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	-	T
30	DMG 2 T channel C2	Switching ON/OFF	$\begin{array}{l\|} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	W	-
31	DMG 2 T channel C2	Brighter/darker	$\begin{aligned} & \hline 4 \mathrm{bit} \\ & 3.007 \\ & \hline \end{aligned}$	C	R	W	-
32	DMG 2 T channel C2	Dimming value	1 byte 5.001	C	-	W	-
33	DMG 2 T channel C2	Soft switching	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	W	-
34	DMG 2 T channel C2	Lock	$\begin{array}{l\|} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	W	-
35	DMG 2 T channel C2	Call up/save scenes	$\begin{array}{\|l\|} \hline 1 \text { byte } \\ 17.001 \\ \hline \end{array}$	C	R	W	-
36	DMG 2 T channel C2	Enable scenes = 1	$\begin{array}{l\|} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	W	-
		Lock scenes = 1	$\begin{array}{l\|l} \hline 1 \mathrm{bit} \\ 1.001 \end{array}$	C	R	W	-
37	DMG 2 T channel C2	Force $=0$	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	W	-
		Force $=1$	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \\ & \hline \end{aligned}$	C	R	W	-
		Dimming value with forced op	$\begin{aligned} & \hline 1 \text { byte } \\ & 5.001 \end{aligned}$	C	R	W	-
		Forced operation	$\begin{array}{\|l\|} \hline 2 \text { bit } \\ 2.001 \\ \hline \end{array}$	C	R	W	-
38	DMG 2 T channel C2	Dimming value limit	$\begin{aligned} & \hline 1 \text { byte } \\ & 5.001 \end{aligned}$	C	R	W	-
39	DMG 2 T channel C2	Feedback On/Off	$\begin{aligned} & 1 \mathrm{bit} \\ & 1.001 \end{aligned}$	C	R	-	T
40	DMG 2 T channel C2	Feedback in \%	1 byte 5.001	C	R	-	T

Continuation:

No.	Object name	Function	Length	Flags			
				C	R	W	T
41	DMG 2 T channel C2	Time to next service	$\begin{aligned} & \hline 2 \text { byte } \\ & 7.001 \end{aligned}$	C	R	W	T
	DMG 2 T channel C2	Operating hours feedback	$\begin{aligned} & \hline 2 \text { byte } \\ & 7.001 \\ & \hline \end{aligned}$	C	R	W	T
42	DMG 2 T channel C2	Service required	$\begin{aligned} & \hline 1 \mathrm{bit} \\ & 1.001 \\ & \hline \end{aligned}$	C	R	-	T
43	DMG 2 T channel C2	Reset service	$\begin{array}{l\|l} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
	DMG 2 T channel C2	Reset operating hours	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	W	-
44	DMG 2 T channel C2	General error message	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	-	T
45	DMG 2 T channel C2	Short circuit message	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	-	T
46	DMG 2 T channel C2	Excess temperature message	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	-	T
47	DMG 2 T channel C2	Mains power failure	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	-	T
48	DMG 2 T channel C2	Load type message (R, C/L)	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \\ & \hline \end{aligned}$	C	R	-	T

Table 5: Overview of channel-related objects

Basic module DMG 2 T		1st update DME 2 T		2nd upgrade DME 2 T	
C 1	C 2	C 1	C 2	C 1	C 2
0	30	80	110	160	190
1	31	81	111	161	191
2	32	82	112	162	192
3	33	83	113	163	193
4	34	84	114	164	194
5	35	85	115	165	195
6	36	86	116	166	196
7	37	87	117	167	197
8	38	88	118	168	198
9	39	89	119	169	199
10	40	90	120	170	200
11	41	91	121	171	201
12	42	92	122	172	202
13	43	93	123	173	203
14	44	94	124	174	204
15	45	95	125	175	205
16	46	96	126	176	206
17	47	97	127	177	207
18	48	98	128	178	208

5.2.2 Common objects

These objects are partly used by the basic device and the two upgrade devices.
Table 6:

No.	Object name	Function	$\begin{aligned} & \text { Type } \\ & \text { DPT } \end{aligned}$	Flags			
				C	R	W	T
78				C	R	W	T
158	EM1 DME 2 T						
238	EM2 DME 2 T						
240	Central continuous ON	For RMG 8S, DME 2 S, SME 2 S, DMG 2 T, DME 2 T	$\begin{aligned} & 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	W	T
241	Central continuous OFF	For RMG 8S, DME 2S, SME 2S, DMG 2 T, DME 2 T	$\begin{aligned} & 1 \mathrm{bit} \\ & 1.001 \end{aligned}$	C	R	W	T
242	Central switching	For RMG8S, DME 2S, SME 2S, DMG 2 T, DME 2 T	$\begin{aligned} & 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	W	T
243	Call up/save central scenes	RMG8S, DME2S, JME4S, SME2S, DMG 2 T, DME 2 T	$\begin{aligned} & 1 \text { Byte } \\ & 18.001 \end{aligned}$	C	R	W	T
244	Central safety 1	For JME 4 S	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \end{array}$	C	R	W	-
245	Central safety 2	For JME 4 S	$\begin{array}{l\|} \hline 1 \text { bit } \\ 1.001 \\ \hline \end{array}$	C	R	W	-
246	Central safety 3	For JME 4 S	$\begin{aligned} & \hline 1 \text { bit } \\ & 1.001 \end{aligned}$	C	R	W	-
247	Central up/down	For JME 4 S	$\begin{aligned} & 1 \mathrm{bit} \\ & 1.008 \end{aligned}$	C	R	W	-
248	Not used						
249	Not used						
250	Version of bus coupling unit	transmit	$\begin{aligned} & 14 \text { byte } \\ & 16.001 \end{aligned}$	C	R	-	T
251	Version of basic device	transmit	$\begin{array}{\|l\|} \hline 14 \text { byte } \\ 16.001 \\ \hline \end{array}$	C	R	-	T
252	Version of first upgrade device	transmit	$\begin{array}{\|l\|} \hline 14 \text { byte } \\ 16.001 \\ \hline \end{array}$	C	R	-	T
253	Version of second upgrade device	transmit	$\begin{aligned} & 14 \text { byte } \\ & 16.001 \end{aligned}$	C	R	-	T

5.2.3 Description of objects

- Objects 0, 30, 80, 110, 160, 190 "Switching ON/OFF"

A 1 on this object dims up to 100%, and 0 dims to 0%

- Objects 1, 31, 81, 111, 161, 191 "brighter/darker"

This object is actuated with 4-bit telegrams (DPT 3.007 Control Dimming).
This function can be used to dim the light up or down in in increments.
In the standard application, telegrams are sent with 64 increments.
IMPORTANT: The response to 4-bit telegrams depends on the
"Switching On/Off with a 4-bit telegram" parameter.
See appendix: 4-bit telegrams (brighter/darker)

- Objects 2, 32, 82, 112, 162, 192 "Dimming value"

This object can be used to select the desired dimmer setting directly.
Format: 1 byte percentage value EIS 2 dimming, value.
$0=0 \%$
$255=100 \%$

- Objects 3, 33, 83, 113, 163, 193 "Soft switching"

A " 1 " on this object starts a soft switching cycle, i.e.:
The brightness is gradually increased, starting from the minimum brightness.
The dimming value remains constant for the programmed time and is then gradually reduced after this time has elapsed.
Once the programmed minimum brightness has been reached the dimming value is reset to 0%.
The cycle can be extended or prematurely terminated via telegrams.
This sequence can also be controlled using a time switch if the "Time between soft ON and soft OFF" parameter is set to "Until soft OFF telegram".
The dimming cycle is then started with a " 1 " and finished with a " 0 ".
See appendix: Use of the soft switch function

- Object 4, 34, 84, 114, 164, 194 "Lock"

Responses to setting and cancelling the lock can be configured if the lock function has been activated. (parameter page Channel C1/C2 function selection).
The lock only applies when the object is received, i.e. with Lock with OFF telegram the channel is not locked after bus restoration.
If the parameter Behaviour when setting the lock = no reaction, a running soft-switch process will not be interrupted.

- Objects 5, 35, 85, 115, 165, 195 "Call up/save scenes"

Only available if the scene function has been activated (Function selection parameter page).
This object can be used to save and subsequently call up scenes.
Saving stores the dimming value of the channel.
It does not matter how this dimming value is produced (whether via switching commands, central objects or the buttons on the device).
The saved dimming value is re-established when it is called up.
All scene numbers from 1 to 64 are supported.
Each channel can participate in up to 8 scenes.
See appendix: Scenes

- Objects 6, 36, 86, 116, 166, 196 "Lock scenes = 1, Enable scenes = 1"

Locks the scene function with a 1 or a 0 depending on the configuration.
As long as it is locked, scenes cannot be saved or called up.

- Objects 7, 37, 87, 117, 167, 197 "Forced operation = 1" / "Forced operation = 0" / "Dimming value during forced operation"

The function of the forced operation object can be configured as a 1-bit, 2-bit or 1-byte object.
Table 7

Format of forced object	Forced operation		Response with forced operation	
	Trigger with	End with	Start	End
1 bit	1 or 0 (configurable)	$\begin{aligned} & 0 \text { or } 1 \\ & \text { (configurable) } \end{aligned}$	configurable in the application program	
2 bit	Forced operation on $=3$ Forced off $=2$	Deactivate forced operation $=0$ or 1	configurable in the application program.	The last dimming value before forced operation is restored
1 byte	1-100 \%	0	The triggering telegram also acts simultaneously as a forced operation dimming value	The last dimming value before forced operation is restored

- Objects 8, 38, 88, 118, 168, 198 "Dimming value limit"

The value received will be configured as the maximum configurable dimming value. Its range of applicability is defined on the Dimming value restrictions parameter page.

- Object 9, 39, 89, 119, 169, 199 "Feedback On/Off"

Sends the current dimming status:
$1=$ current dimming value is between 1% and 100%
$0=$ current dimming value is 0%

- Object 10, 40, 90, 120, 170, 200 "Feedback in \%"

Sends the new dimming value after a change as soon as a dimming procedure is completed, i.e. once the new set point value has been reached.
Format: 1 Byte, 0 ... 255 i.e. 0 ... 100\%

- Objects 11, 41, 91, 121, 171, 201"Operating hours feedback", "Time to next service"

Only available if the operating hours counter function has been activated (Function selection parameter page).
Reports, depending on selected Type of operating hours counter (Operating hours counter and service parameter page), either the remaining period to the next set service or the current status of the operating hours counter.

- Objects 12, 42, 92, 122, 172, 202 "Service required"

Only available if the operating hours counter function has been activated (Function selection parameter page) and Type of operating hours counter $=$ Counter for time to next service.

Reports if the next service is due.
$0=$ not due
1 = service is due.

- Objects 13, 43, 93, 123, 173, 203 "Reset operating hours", "Reset service"

Only available if the operating hours counter function has been activated (Function selection parameter page).

- Object 14, 44, 94, 124, 174, 204 "General error message"

Used as a malfunction signal:
$0=$ No error
1 = an error has been detected
This message can, for example, be displayed on a screen.

- Object 15, 45, 95, 125, 175, 205 "Short circuit message"
$0=\mathrm{OK}$
1 = Short circuit at dimmer output:
Check connected lines and load.
\rightarrow When there is a short circuit, all 4 status LEDs on the device flash.
- Object 16, 46, 96, 126, 176, 206 "Excess temperature message"

0 = OK

$1=$ the dimmer is overloaded:

- connected power is too high,
- ambient temperature is too high,
- booster defective
- incorrect installation position, i.e. device cannot dissipate the heat,
\rightarrow If there is excess temperature, the status LEDs 2, 3, and 4 flash.
- Object 17, 47, 97, 127, 177, 207 "Mains power failure"
$0=\mathrm{OK}$
1 = No mains voltage available:
Loss of power or defective hardware
\rightarrow To be able to recognise the mains power failure on the load side, the dimmer must be supplied with power via the mains connection on the basic device.
- Object 18, 48, 98, 128, 178, 208 "Load type message (R/C, L)"

Currently selected load type feedback.
$0=$ Phase control (L load connected), conventional transformers.
1 = Reverse phase control (R, C load connected), electronic transformers or incandescent lamps.

- Objects 78, 158, 238 "Manual"

Only available for devices in the MIX2 series (order number 493...)
Puts the relevant module in manual mode or sends the status of the manual operation.
Table 8

Telegram	Meaning	Explanation
0	Auto	All channels can be operated via the bus as well as via the buttons.
1	Manual	The channels can only be operated via the buttons on the device. Bus telegrams will not work. Any time-based functions that are running (e.g. soft switching) will be terminated.

The duration of the manual mode, i.e. the function of the manual operation is set on the General parameter page.

After cancelling manual operation already received bus events will not be obtained later. The "Manual" state will be reset during a mains power failure.

- Object 240 "Central permanent ON"

Central switch-on function.
Enables simultaneous switch-on of all channels (basic and extension modules) with a single telegram.
$0=$ No function
1 = Permanent ON
Participation in this object can be set individually for each channel
(see parameter page DMG 2 T channel C1/C2: Function selection).

IMPORTANT:

This object takes top priority.
As long as it is set, the other switching commands will not work on the participating channels.
Works on the following devices:
RMG 8 S/RME 8 S, RMG 4 I / RME 4 I, RMG 8 T / RME 8 T, RME 4 S / C-Last, DMG 2 T, DME 2 S/T, SME 2 S.

- Object 241 "Central permanent OFF"

Central switch-off function.
Enables simultaneous switch-off of all channels (basic and extension modules) with a single telegram.
$0=$ No function
1 = Permanent OFF
Participation in this object can be set individually for each channel
(see parameter page).
IMPORTANT: This object has the second highest priority after Central permanent ON. As long as it is set, the other switching commands will not work on the participating channels.
Works on the following devices:
RMG 8 S/RME 8 S, RMG 4 I / RME 4 I, RMG 8 T / RME 8 T, RME 4 S / C-Last, DMG 2 T, DME 2 S/T, SME 2 S.

- Object 242 "Central switching"

Central switching function.
Enables simultaneous switch-on or off of all channels (basic and extension modules) with a single
telegram.
$0=\mathrm{OFF}$
$1=\mathrm{ON}$
Participation in this object can be set individually for each channel
(see parameter page DMG 2 T channel C1/C2: Function selection).
With this object, every participating channel responds exactly as if its first object (i.e. obj. 0, 30, etc.) were receiving a switching command.

Works on the following devices:
RMG 8 S/RME 8 S, RMG 4 I / RME 4 I, RMG 8 T / RME 8 T, RME 4 S / C-Last, DMG 2 T, DME 2 S/T, SME 2 S.

- Object 243 "Call up/save central scenes"

This object can be used to save and subsequently call up "scenes". The save process stores the current status of the dimming channel (or the switch state with other actuators), regardless of how the status was brought about (e.g. via dimming values, switching commands, central objects or the manual switches).
The saved status is thus restored when called up.
Each channel can participate in a maximum of 8 scenes.
Works on the following devices:
RMG 4 I / RME 4 I, RMG 8 S / RME 8 S, RMG 8 T / RME 8 T, DMG 2 T / DME 2 T, JMG 4 T / JME 4 T, RME 4 S / C-Last, DME 2 S, SME 2 S, JME 4 S.

See appendix: The scenes

- Objects 244, 245, 246

Not used.

- Object 247 "Central Up/Down"

Not used.

- Object 248

Not used.

- Object 249

Not used.

- Object 250 "Version of bus coupling unit"

For diagnostic purposes only.
Sends the bus coupling unit software version after reset or download.
Can also be read out via the ETS.

Format: Axx Hyy Vzzz

Code	Meaning
xx	00 .. FF = Version of application without dividing point $(14=\mathrm{V} 1.4,15=\mathrm{V} 1.5$ etc. $)$.
yy	Hardware version $00 . .99$
zzz	Firmware version $000 . .999$

EXAMPLE: A15 H03 V014

- ETS Application Version 1.5
- Hardware version \$03
- Firmware version \$14
- Object 251 "Version of basic module"

For diagnostic purposes only.
Only for basic modules in the MIX2 series (order number 493...).
Sends the software version (firmware) of the basic module after reset or download.
Can also be read out via the ETS.
The version is issued as an ASCII character string.
Format: Mxx Hyy Vzzz

Code	Meaning
xx	$01 . . \mathrm{FF}=$ Module code (hexadecimal).
yy	Hardware version 00..99
zzz	Firmware version $000 . .999$

EXAMPLE: M11 H25 V025

- Module \$11 = RMG 8 S
- Hardware version V25
- Firmware version V25

Possible module codes (as at 04.2014)

Module	Code
Module or mains voltage are unavailable.	$\$ 00$
RMG 8 S	$\$ 11$
RMG 4 I	$\$ 12$
DMG 2 T	$\$ 13$
JMG 4 T/JMG 4 T 24V	$\$ 14$
HMG 6 T	$\$ 15$
RMG 8 T	$\$ 17$

EXAMPLE: M15 H25 V025

- Module \$15 = HMG 6 T
- Hardware version V25
- Firmware version V25
- Object 252 "Version of first extension module"

Telegram format: See above, object 251
Possible module codes (as at 04.2014)

Module	Code
Module or mains voltage are unavailable.	$\$ 00$
RME 8 S	$\$ 11$
RME 4 I	$\$ 12$
DME 2 T	$\$ 13$
JME 4 T/JME 4 T 24V	$\$ 14$
HME 6 T	$\$ 15$
RME 8 T	$\$ 17$

- Object 253 "Version of second extension module"

See above, object 252

5.3 Parameters

5.3.1 Parameter pages

Every device has 2 identical channels.
A copy function in the 2nd channel makes programming easier.

Table 9

Function	description		
General	Selection of module and central parameters.		
BASIC DE VICE: DMG 2 T	(Empty page)		
DMG 2 T Channel C1			
Function selection		\quad	Characteristics of channel and activation of additional functions
:---			
(soft switching, forced operation, scenes, etc.).			

5.3.2 General

Table 10

Designation	Values	Description
Type of basic module	Select device... RMG 8 S.. RMG 8 T.. RMG 4 I.. DMG 2 T.. JMG 4 T/JMG 4 T 24 V .. HMG 6 T..	Selection of available basic module (MIX2 series only)
Type of first extension module	not available/inactive RME 8 S.. RME 8 T.. RME 4 I.. DME 2 T.. JME 4 T/JME 4 T 24V.. HME 6 T.. RME 4 S / RME 4 C-Last.. DME 2 / SME 2.. BME 6.. JME 4 S.. HME 4..	Selection of first extension module, if available. (MIX or MIX2 series)
Type of second extension module	not available/inactive RME 8 S.. RME 8 T.. RME 4 I.. DME 2 T.. JME 4 T/JME 4 T 24V.. HME 6 T.. RME 4 S / RME 4 C-Last.. DME 2 / SME 2.. BME 6.. JME 4 S.. HME 4..	Selection of second extension module, if available. (MIX or MIX2 series)
Time for cyclical sending of feedback object (MIX series, order no. 491...)	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes 30 minutes, 45 minutes 60 minutes	This parameter is used exclusively for MIX Series extension modules (DME 2 S , SME 2, JME 4 S, BME 6, RME 4 S / C-Last, and HME 4).

Continuation:

Designation	Values	Description
Function of manual button (MIX2 series, order no. 493...)	applies for 24 hours or until reset via object disabled applies until reset via object applies for 30 minutes or until reset via object applies for 1 hour or until reset via object applies for 2 hours or until reset via object applies for 4 hours or until reset via object applies for 8 hours or until reset via object applies for 12 hours or until reset via object	Determines how long the device works manually and how this is ended. In manual mode, the channels can only be switched on and off via the push buttons on the device. See also: Object_78 This parameter is used exclusively for MIX2 series devices.
Manual operation of channels (MIX2 series, order no. 493...)	enabled disabled	The channels can be operated via the buttons on the device. No manual operation, the buttons on the device are locked.

5.3.3 DMG 2 T Channel C1/C2: Function selection

Table 11

Designation	Values	description
Copy main parameter of channel C1	no yes yes, channel C2 boosts channel C1	This parameter is only available for C2. C1 and C2 can be configured completely separately from one another. C2 is operated automatically with the same settings as C1. Only forced operation, scenes, operating hours counter and diagnostic messages remain individually configurable for C2. Channel C2 is wired in parallel with C1 and serves only as an output amplifier. In this mode up to 4 booster modules can be connected in parallel and a dimming output of up to 2000 W achieved
Adjust dimming value limits	no yes..	The standard values apply: Implement limit when executing the object = no Limit applies for: - Soft switching, - absolute dimming, - relative dimming, - switch command = no The page Dimming value restrictions will be shown and all parameters can be adjusted individually.

Continuation:

Designation	Values	description
Adjust soft switching	no	The standard values apply: - Time for Soft ON = 1 min - Dimming value after Soft On = 100\% - Time between Soft On and Soft Off $=5 \mathrm{~min}$ - Time for Soft OFF = 1 min The page Soft switching will be shown and all parameters can be adjusted individually.
Adjust lock function	no	The standard values apply: - Lock with ON telegram - Behaviour when setting the lock $\text { = } 10 \%$ - Behaviour when cancelling the lock = update The page Lock function will be shown and all parameters can be adjusted individually.
Activate forced operation function	$\begin{array}{r} \text { no } \\ \text { yes.. } \end{array}$	No forced operation function. The page Forced operation will be shown.
Activate scenes	no yes..	Do not use scenes. The Scenes will be shown
Participation in central objects	Yes: in all central objects only in central continuous ON only in central continuous OFF only in central switching only in central switching and continuous ON only in central switching and continuous OFF only in central permanent On and permanent OFF	Central objects are not taken into account. Which central objects are to be taken into account? Central objects enable the simultaneous switching on and off of several channels with one single object.

Continuation:

Designation	Values	description
Adjust feedback	no	The standard values apply: - Format of 1-bit feedback = not inverted - Send 1-bit feedback cyclically = no - Send 8-Bit feedback: = only after ending dimming process - Send 8-bit feedback cyclically = no - Time for cyclical transmission of feedback $=60 \mathrm{~min}$ The page Feedback will be shown and all parameters can be adjusted individually.
Activate operating hours counter	no yes..	No operating hours counter. The page operating hours counter will be shown.
Activate diagnostic messages	no	No diagnostic messages The page Diagnostic messages will be shown.

5.3.4 Dimming response

Table 12

Continuation:

Designation	Values	description
Load selection (continuation)	dimmable energy-saving lamps with L response Fan (soft switching deactivated) LEDs (RC, 0-90 \%, from 09/2013) reserve 2 reserve 32	With ESL, only use if a disruptive flickering is noted when dimming up or down. See appendix: Dimming energysaving lamps (ESL) Special mode for fans, with configurable start-up time (see below). Only for LED lights that cannot be dimmed down when $=100 \%$ Do not use.
Start-up time	2-60 s	Only with Load selection = fan. Time for which the fan must be driven with full voltage, until it has reached a specific speed.
Minimum dimming value	$\begin{array}{r} 1 \%, 5 \%, 10 \%, \\ 15 \%, 20 \%, 25 \%, 30 \% \\ 35 \%, 40 \%, 45 \%, 50 \% \end{array}$	Minimum dimming value for all dimming processes (except 0\%). Any values (switch-on dimming value, response to bus failure, etc.) which are below this threshold are increased to the minimum dimming value.
Dimming time 1 from 0\% to 100\%	$\begin{array}{r} 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \\ \hline \end{array}$	This parameter defines the maximum dimming speed from 0 to 100\%
Dimming time 2 from 0\% to 100\%	$\begin{array}{r} 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \\ \hline \end{array}$	For greater flexibility 3 different values can be specified. (see below).
Dimming time 3 from 0\% to 100\%	$\begin{array}{r} 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \end{array}$	
Behaviour when receiving a switch command (1-bit)	immediate on soft on with dimming time 1 soft on with dimming time 2 soft on with dimming time 3	The change from 0% to 100% or 100% to 0% takes place within max. 1 s . The change from 0% to 100% or 100% to 0% takes place within the preset dimming time.

Continuation:

Designation	Values	description
Behaviour when receiving a dimming command (4-bit)	immediate on soft on with dimming time 1 soft on with dimming time 2 soft on with dimming time 3	The change from 0% to 100% or 100% to 0% takes place within max. 1 s (in very quick increments), but can be interrupted by a stop command (release button). The change from 0% to 100% or 100% to 0% takes place within the preset dimming time in correspondingly lower increments.
Behaviour when receiving an absolute value (8-bit)	immediate on soft on with dimming time 1 soft on with dimming time 2 soft on with dimming time 3	The received dimming value is adopted immediately (max. delay 1 s). The change from the new dimming value takes place within the preset dimming time proportionately to the change in value. Example with dimming time $1=$ 12 s : Change from: - 0 to 100% or 100 to 0% in 12 s (= 100% of 12 s) - 25 to 50% or 50 to 25% in 3 s ($=25 \%$ of 12 s) etc.
Switch-on value	Value before previous switch- off minimum value $\begin{array}{r} 100 \% \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \% \\ 70 \%, 80 \%, 90 \% \end{array}$	The last dimming value before switching off is saved and restored The configured minimum brightness is applied. The dimmer adopts the selected value after it is switched on. Here again the configured minimum dimmer value needs to be taken into account.

Continuation:

Designation	Values	description
Switching on/off with a 4-bit dim telegram	Defines the response if the channel is switched off and a 4- bit telegram (brighter/darker) is received. See appendix: 4-bit telegrams (brighter/darker).	
	$n o$	Channel status remains unchanged.
	yes	Channel is switched on and dimmed or switched off.

5.3.5 Dimming value limits

The dimming value can be temporarily restricted via the Object 8 Brightness restriction. This is used, for example, to ensure that basic lighting is not exceeded at night, while during the evening the full range of lighting can be used.

The function is implemented as follows:
If the object value $=0$, the dimming value is not restricted.
If the object value is greater than 0 , then this value indicates the limits for the dimming value. If the object value is smaller than the configured minimum dimming value, then the brightness is restricted to this minimum dimming value.
If the restriction is removed, the dimming value continues to remain restricted until a new dimming command is received.
During the restriction, the Soft On and Soft Off times are adjusted in such a way that the speed of the brightness change remains the same as when there are no restrictions.

Table 13

Designation	Values	description
Perform limit in describing object	no yes	Limit not applied till next dimming process. Dimming value limit as soon as a value is received on the dimming value limit object (Obj. 8, 38..).
Limit applies to switching command (1-bit)	no yes	No limit during switch commands. Limit is effective.
Limit applies to relative dimming (4-bit)	no yes	No restriction during brighter/darker comments. Limit is effective.
Limit applies to absolute dimming (8-bit)	no yes	No limit for percentage value telegrams. Limit is effective.
Limit applies to soft switching	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	No limit for soft switching Limit is effective.

5.3.6 Soft switching

Table 14

Designation	Values	description
Time for Soft ON	$\begin{array}{r} 0 s, 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, 15 \mathrm{~s} \\ 24 \mathrm{~s}, 30 \mathrm{~s}, 45 \mathrm{~s}, 1 \mathrm{~min} \end{array}$ $2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}$ $6 \mathrm{~min}, 7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}$ $10 \mathrm{~min}, 12 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}$ $30 \mathrm{~min}, 40 \mathrm{~min}, 50 \mathrm{~min}, 60 \mathrm{~min}$	Duration of the dimming-up phase (t1) for Soft switching (see appendix). 0 sec. = switch on immediately. IMPORTANT: See appendix for further details: Retriggering and premature switch-off
Dimming value after Soft ON	$10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$, $70 \%, 80 \%, 90 \%, 100 \%$	Final value at the end of the Soft on phase (val) Remarks: Here again the configured minimum dimmer value needs to be taken into account.
Time between Soft ON and Soft OFF	Until Soft Off telegram $\begin{array}{r} 1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s} \\ 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s} \\ 10 \mathrm{~s}, 15 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s} \end{array}$ $40 \mathrm{~s}, 50 \mathrm{~s}, 1 \mathrm{~min}, 2 \mathrm{~min}$ $3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}, 6 \mathrm{~min}$ $7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}, 10 \mathrm{~min}$ $12 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}$ $40 \mathrm{~min}, 50 \mathrm{~min}, 60 \mathrm{~min}$	No time restriction; Soft Off phase is initiated by a telegram. Delay (t2) to the start of the Soft Off phase
Time for Soft OFF	$0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}$ $6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, 15 \mathrm{~s}$ $24 \mathrm{~s}, 30 \mathrm{~s}, 45 \mathrm{~s}, 1$ min $2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}$ $6 \mathrm{~min}, 7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}$ $10 \mathrm{~min}, 12 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}$ $30 \mathrm{~min}, 40 \mathrm{~min}, 50 \mathrm{~min}, 60 \mathrm{~min}$	Duration of the Soft Off phase (t3) 0 sec. = switch off immediately IMPORTANT: See appendix for further details: Retriggering and premature switch-off

5.3.7 Locking function

Table 15

Designation	Values	description
Lock telegram	lock with ON telegram lock with OFF telegram	$\begin{aligned} & 0=\text { Enable } \\ & 1=\text { lock } \\ & 0=\text { lock } \\ & 1=\text { Enable } \end{aligned}$ Note: The lock is always deactivated after reset.
Behaviour when setting the lock	No change 100% $0 \%, 10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$, $70 \%, 80 \%, 90 \%$	No response. Dim to the set value
Behaviour when cancelling the lock		No response. If a telegram was received during the lock: apply state. Otherwise: restore state before the lock. Dim to the set value

5.3.8 Forced operation

Table 16

Designation	Values	description
Format of forced object	$\begin{array}{r} \begin{array}{r} 1 \text { bit } \\ 2 \text { bit } \\ \\ 1 \text { byte (\%) } \end{array} \end{array}$	Forced operation triggered by: Switch telegram. Priority telegram. Dimming value.
1 bit		
Activate forced function with		Recommended. After reset/download forced operation is already activated and must be cancelled if necessary.
Behaviour at start of forced operation	No change Minimum dimming value 100% OFF $10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$ $70 \%, 80 \%, 90 \%$	Response to the receipt of a forced operation telegram. Here again the configured minimum dimmer value needs to be taken into account.
Behaviour at end of forced operation	update*Value before forced operation Minimum dimming value 100% OFF$10 \%, 20 \%, 30 \%$$40 \%, 50 \%, 60 \%$$70 \%, 80 \%, 90 \%$	Response to cancellation of forced operation. Here again the configured minimum dimmer value needs to be taken into account.
2 bit		
Response with forced operation ON	No change Minimum dimming value 100% OFF $10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$ $70 \%, 80 \%, 90 \%$	Response to the receipt of a forced operation telegram. Here again the configured minimum dimmer value needs to be taken into account.
Response with forced operation OFF	OFF	Switch off.
Behaviour at end of forced operation	update*Value before forced operation Minimum dimming value 100% OFF$10 \%, 20 \%, 30 \%$$40 \%, 50 \%, 60 \%$$70 \%, 80 \%, 90 \%$	Response to cancellation of forced operation Here again the configured minimum dimmer value needs to be taken into account.

Continuation:

Designation	Values	description
1 byte (\%)		
Behaviour at end of forced operation	update* Value before forced operation Minimum dimming value 100% OFF $10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$ $70 \%, 80 \%, 90 \%$	Response to cancellation of forced operation Here again the configured minimum dimming value needs to be taken into account.

* 4-bit telegrams received during forced mode will not be processed. Any soft ON/OFF process will be stopped.

5.3.9 Scenes

This page appears when the Scenes are activated on the Function selection parameter page. Each channel can participate in up to 8 scenes.

Table 17

Designation	Values	description
Lock telegram for scenes	lock with ON telegram lock with OFF telegram	$\begin{aligned} & 0=\text { Enable } \\ & 1=\text { lock } \\ & 0=\text { lock } \\ & 1=\text { Enable } \end{aligned}$ Note: The lock is always deactivated after reset.
All channel scene statuses	Overwrite on download Unchanged after download	A download deletes all scene memories in a channel, i.e. all previously taught scenes. When a scene number is called, the channel assumes the configured Status after download (see below). See appendix: Enter scenes without telegrams (MIX2 ONLY). All previously taught-in scenes are saved. However, the scene numbers the channel can react to can be changed (see below: Channel reacts to).
Participation in central scene object	$\begin{aligned} & \hline \text { No } \\ & \text { yes } \\ & \hline \end{aligned}$	Should the device react to the central scene object?
Channel reacts to	No scene number Scene number 1 Scene number 63	First of the 8 possible scene numbers the channel is to react to.
Allocated dimming value	Off $10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$, $70 \%, 80 \%, 90 \%, 100 \%$	New dimming value to be assigned to the selected scene number. Only possible if the scene statuses are to be overwritten after download.

Continuation:

Designation	Values	description
Permit teach-in	No Yes	Scenes can only be called up. The user can both call up and teach-in or amend scenes.
Channel reacts to	No scene number Scene number1 Scene number 2 Scene number 63	Second of the 8 possible scene numbers
Allocated dimming value	Off $10 \%, 20 \%, 30 \%$ $40 \%, 50 \%, 60 \%$, $70 \%, 80 \%, 90 \%, 100 \%$	See above.
Permit teach-in	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number1 Scene number 3 Scene number 63	Third of the 8 possible scene numbers
Allocated dimming value	$\begin{array}{r} O f f \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \end{array}$	See above.
Permit teach-in	$\begin{gathered} \hline \text { No } \\ \text { Yes } \\ \hline \end{gathered}$	See above.
Channel reacts to	No scene number Scene number1 Scene number 4 Scene number 63	Fourth of the 8 possible scene numbers
Allocated dimming value	$\begin{array}{r} O f f \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 5 Scene number 63	Fifth of the 8 possible scene numbers

Continuation:

Designation	Values	description
Allocated dimming value	$\begin{array}{r} \text { Off } \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number1 Scene number 6 Scene number 63	Sixth of the 8 possible scene numbers
Allocated dimming value	$\begin{array}{r} \text { Off } \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number1 Scene number 7 Scene number 63	Seventh of the 8 possible scene numbers
Allocated dimming value	$\begin{array}{r} \text { Off } \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number1 Scene number 8 Scene number 63	Last of the 8 possible scene numbers
Allocated dimming value	$\begin{array}{r} O f f \\ 10 \%, 20 \%, 30 \% \\ 40 \%, 50 \%, 60 \%, \\ 70 \%, 80 \%, 90 \%, 100 \% \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.

5.3.10 Feedback

Each channel has 2 feedback objects (e.g. Obj. $9+10,39+40$, etc.)
Table 18

Designation	Values	description
Format of 1-bit feedback	Not inverted inverted	$\begin{aligned} & \hline \text { Standard setting: } \\ & 1-100 \%=1 \\ & 0 \%=0 \\ & 1-100 \%=0 \\ & 0 \%=1 \\ & \hline \end{aligned}$
Send 1-bit feedback cyclically	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	Send at regular intervals?
Send 8-bit feedback	only after ending dimming process every 10 \% every 20% every 30%	Only send current dimmer value when the new dimmer value has been reached. Send even during the dimming process
Send 8-bit feedback cyclically	$\begin{array}{r} \text { no } \\ \text { yes } \\ \hline \end{array}$	Send at regular intervals?
Time for cyclical transmission of feedback (if available)	2 min, 3 min , 5 min 10 min, $15 \mathrm{~min}, 20 \mathrm{~min}$ $30 \mathrm{~min}, 45 \mathrm{~min}, 60 \mathrm{~min}$	At what interval? This setting applies for both feedback objects (1 and 8-bit)

5.3.11 Operating hours counter and service

This page appears when Activate operating hours counter is selected on the Function selection parameter page.

Table 19

Designation	Values	description
Type of operating hours counter	Operating hours counter counter for time period before next service	Forward counter for channel power-on time. Backward counter for channel power-on time.
Operating hours counter		
Reporting of changes to operating hours (0.. 100 h, $0=$ no report)	$\begin{array}{r} 0 . .100 \\ \text { Default value }=10 \end{array}$	At what interval is the current counter status to be sent? Example: $10=$ Send each time the counter status increases by another 10 hours.
Report operating hours cyclically	$\begin{aligned} & \text { No } \\ & \text { yes } \end{aligned}$	Send at regular intervals?
Time for cyclical transmission	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?
counter for time period before next service		
Service interval (0..2000, x10 h)	$0 . .2000$ Default value $=100$	Desired timescale between two services. Example: $\begin{aligned} & 10=10 \times 10 \mathrm{~h} \\ & =100 \text { hours } \end{aligned}$
Reporting of changes to time to service (0.. 100 h, $0=$ no report)	$\begin{array}{r} 0 . .100 \\ \text { Default value }=10 \end{array}$	At what interval is the current counter status to be sent? Example: $10=$ Send each time the counter status decreases by another 10 hours.
Report time to service cyclically	$\begin{gathered} \text { no } \\ \text { Yes } \end{gathered}$	Send remaining time to next service at regular intervals? \rightarrow Object Time to next service.

Continuation:

Designation	Values	description
Report service cyclically	Yos	Send expiry of time to next
		service at regular intervals?
	\rightarrow Object Service required.	
Tine for cyclical transmission	2 minutes, 3 minutes,	At what interval?
(time to service and service	5 minutes, 10 minutes,	
	15 minutes, 20 minutes,	
	30 minutes, 45 minutes	
$\mathbf{6 0}$ minutes		

5.3.12 Loss of power and restoration

Table 20

Designation	Values	description
Dimming value during download and bus failure	Same as before failure	Restore status before download
or maintain status before bus		
failure.		
	$100 \%, 0 \%$,	Apply set value here.
	$10 \%, 20 \%, 30 \%$	Here again the configured
	$40 \%, 50 \%, 60 \%$	minimum dimmer value needs to
	$70 \%, 80 \%, 90 \%$	be taken into account.
Dimming value during	Same as before failure	Restore status before failure
restoration of the mains supply	$100 \%, 0 \%$	Apply set value here.
or bus supply	$10 \%, 20 \%, 30 \%$	Here again the configured
	$40 \%, 50 \%, 60 \%$	minimum dimmer value needs to

5.3.13 Diagnostic messages

The diagnostic messages are used during troubleshooting when there are faults.
Table 21

Designation	Values	description
Send general error cyclically	$\begin{gathered} \text { no } \\ \text { Yes } \end{gathered}$	Which messages should be sent cyclically?
Send short circuit cyclically	no Yes	
Send excess temperature cyclically	$\begin{gathered} \text { no } \\ \text { Yes } \end{gathered}$	
Send mains failure cyclically	no Yes	
Send load type cyclically	$\begin{gathered} \text { no } \\ \text { Yes } \end{gathered}$	
Cycle time for all diagnostic messages (if used)	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?

6 Typical applications

6.1 Bedroom lighting

The light should not be blinding when switching on at night, otherwise it should light up immediately at 100%.
All dimming values should, however, be configurable via the dimming function:

- At night the switch-on value should not exceed the 40% limit
- Dimming up to 100% should be possible however (e.g. when reading)
- No restrictions during the day
- Dimming via 2 buttons

6.1.1 Devices:

- DMG 2 T (4930270)
- TA2 (4969202)
- TR 648 top2 (6489210)
- 2 conventional buttons (NO contact)

6.1.2 Overview

Figure 1

6.1.3 Objects and links

Table 22:

No.	TA2	No.	DMG 2 T	Comment
	Object name			
0	Dim channel 1/Switch on/off*	0	Switching On/Off	Switch on light via button 1 (brief button press)
1	Dim channel 1 / brighter**	1	Brighter / darker	Button 1 (brighter)
3	Dim channel 2 / Switch on/off*	0	Switching On/Off	Switch off light via button 2 (brief button press)
4	Dim channel 1/darker**	1	Brighter / darker	Button 2 (darker)

* A common group address for both objects
** A common group address for both objects

Table 23:

No.	TR 648 top2	No.	DMG 2 T	Comment
	Object name			
7	C1.1 switching channel per cent	8	Dimming value limit	$0.4-100 \%=$ limit $0=$ No limit.

6.1.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

Table 24: DMG 2 T

Parameter page	to select parameter	Setting
DMG 2 T channel C1: Function selection	Adjust dimming value limits	yes
Dimming response	Switch-on value	100%
Dimming value limits	Perform limit in describing object	yes
	Limit applies to switching command	yes
	Limit applies to relative dimming	no
	Limit applies to absolute dimming	no
	Limit applies to soft switching	yes

Table 25: TA 2

Parameter page	to select parameter	Setting
Channel 1	Channel function	Dimming
	Reaction to long / short	Brighter / On
	Channel function	Dimming
	Reaction to long / short	Darker / Off

Table 26: TR 648 top2

Parameter page	to select parameter	Setting
General	Activate time switch channel C1	yes
Switching channel C1	Telegram type C1.1	percentage value
	With clock \rightarrow ON	send following telegram once
	Telegram (\%)	40
	With clock \rightarrow OFF	send following telegram once
	Telegram (\%)	0

7 APPENDIX

7.1 Use of soft switching function

7.1.1 General

The Soft switch function is a cycle consisting of switch-on, dimming up, Maintain target brightness, dimming down and switch-off.

7.1.2 Soft ON for staircase lighting

The following function is recommended for staircase lighting:
When the light switch is operated: Full brightness.
After required length of time: Lighting is slowly dimmed down and then switched off.

A	Switch sends Soft On telegram.
t1	The Soft On time is equal to 0, i.e. the "Dim up slowly" function is deactivated
B	The brightness is immediately adjusted to the configured value after Soft On
t2	Configured time between Soft on and Soft Off* elapses
t2+	It is possible for t2 to be extended with another Soft On telegram
C	t2 or t2+ has elapsed, or a Soft Off telegram was received: Start of the Soft Off phase
t3	The brightness is gradually reduced within the configured time for Soft Off
D	t3 has elapsed, the configured minimum brightness has been reached and the system dims to 0\%

* Soft Off via configured time or via Soft Off telegram.

The light can be turned off with a Soft Off telegram or retriggered with a Soft On telegram.

7.1.3 Entrance lighting

A motion detector activates the dimmer via the soft switching object.
The lighting is dimmed up within 5 seconds if a movement is detected.
This delay gives the eyes enough time to adjust to the light without being dazzled
The lighting is gradually dimmed down within a minute and then switched off after the configured time has elapsed or a Soft Off telegram is received via the button or via the motion detector (cyclic).

Sequence:

A	Soft On is sent by the motion detector: The brightness is immediately adjusted to the configured Minimum dimming value
t1	The brightness is gradually increased within the configured time for Soft On (5 s)
B	Configured value after Soft On is reached
t2	Time between Soft On (1) and Soft Off
C	Soft Off telegram was received or configured time has elapsed: Start of the Soft Off phase
t3	The brightness is gradually reduced within the configured time for Soft Off
D	t3 has elapsed, the configured Minimum dimming value has been reached and the system dims to 0\%

7.1.4 Simulation of a daily routine

Using a time switch, it is possible to simulate an entire daily routine with sunrise and sunset. To do this, the parameter "Time between Soft ON and Soft OFF" needs to be set to "Until Soft Off telegram" (See object 3, soft switching).

The timer switch sends object 3 a Soft On telegram (=1) in the morning and a Soft Off telegram (=0) in the evening.

Key:
Min. Configurable Minimum dimming value
Val. Target dimming value, i.e. configured Dimming value after Soft On
$\mathrm{t}(\mathrm{h})$ Time

Sequence:

A	Soft ON will be sent by the timer: The brightness is immediately adjusted to the configured Minimum dimming value
t1	The brightness is gradually increased within the configured time for Soft On
B	Configured value after Soft On is reached
t2	Time programmed in the time switch between Soft On (1) and Soft Off telegram (0)
C	Soft Off telegram has been received: start of the Soft Off phase
t3	The brightness is gradually reduced within the configured time for Soft Off
D	t3 has elapsed, the configured minimum brightness has been reached and the system dims to 0\%

7.1.5 Retriggering and premature switch-off

It is also possible to influence the soft switching process while it is still active. Depending on which phase is currently being executed, the following responses can be triggered by Soft ON and Soft OFF telegrams.

Table 27

Telegram	Response
Soft ON during t1	none
Soft ON during t2	t2 is restarted
Soft ON during t3	A new Soft On process is started. See below.
Soft OFF during t1	The Soft ON process is stopped and the Soft OFF phase started immediately. See below.
Soft OFF during t2	The Soft Off phase starts immediately.
Soft OFF during t3	none

7.1.6 Soft Off telegram during a Soft On process

The duration of the Soft Off phase ($\mathrm{t} 3^{\prime}$) is always equivalent to the configured time, independent of the current dimming value.

Example 1: Soft Off at the start of the Soft On phase.

Example 2: Soft Off at the end of the Soft On phase.

Sequence:

A	A Soft On process is started.
B	A Soft Off telegram is received: The Soft On phase is interrupted and a Soft Off phase starts.
t3'	Duration of the Soft Off phase = configured Soft Off time
D' $^{\prime}$	End of the Soft Off phase

7.1.7 Soft On telegram during a Soft Off process

The duration of the Soft On phase ($\mathrm{t} 1^{\prime}$ ') is always equivalent to the configured time regardless of the current dimming value.

Example 3: Soft On at the start of the Soft Off phase.

Example 4: Soft On at the end of the Soft Off phase.

Sequence:

A	A Soft Off process is started.
B	A Soft Off telegram is received: The Soft Off phase is interrupted and a Soft On phase starts.
t1'	Duration of the Soft On phase = configured Soft On time
D $^{\prime}$	End of the Soft On phase

7.2 Application of the forced operation function

Example: Lighting with brightness control during the daytime and minimum lighting during the night.
The brightness controller continuously measures the brightness of the room and actuates the dimmer as required to keep the brightness constant.
A dimming value of 20% is parameterized for forced mode.
In the evening at the close of work, the time switch activates forced mode, as a result of which the brightness is dimmed down to 20%.
During the night, the lighting is switched on for a certain period of time by the night-watchmen via the central continuous ON function.
In the morning at the start of work, the time switch cancels the forced mode again and the dimmer is actuated via the brightness control.

Table 28

A	Forced mode is cancelled by the timer. As the daylight is not yet bright enough the brightness control actuates the dimmer.
B	The daylight is now bright enough to illuminate the room and the dimmer is switched off.
C	Heavy cloud cover, the dimmer compensates for the lack of bright daylight.
D	Clear sunshine, the dimmer is turned back down.
S	Late afternoon, the dimmer gradually replaces the receding daylight.
F	Forced mode is activated by the timer. The dimmer reduces the light to 20\%.
G	Central continuous ON $=1$
H	Central continuous ON = 0
n	During the night time, the parameterized value for forced mode applies.
c	Night round of security guards: the lighting is switched on via central continuous ON.
m	Morning: Daylight increases and the brightness control slowly reduces the dimming value.
e	Evening: Daylight decreases and the brightness control slowly increases the dimming value.
d	During the daytime, the dimmer is actuated by the brightness control according to the brightness of the sunlight.

7.3 Dimming energy-saving lamps (ESL)

7.3.1 General

Standard energy-saving lamps are not dimmable unless specifically denoted as dimmable. There are also manufacturer- and type-related differences. In particular, there are variations in switchon brightness and performance with cold lamps.

Although the ESL mode of the Theben dimmer takes account of the characteristic features of dimmable energy-saving lamps, attention should be paid to the following points.

- ESL can be connected in parallel but it is recommended to only use the same type of lighting on each channel.
- The maximum output per channel is 400 W (Trailing edge/RC-Mode), 80 W (Leading edge (L-Mode). In parallel operation both channels maximum 800 W (Trailing edge/RC-Mode), 140 W (Leading edge (L-Mode).
- The minimum output per channel is 5 W
- When dimming down rapidly (e.g. Jumping configured, dimming value from 100% to 20%) there may be brief flickering even with "warm" lights.
- Brightness values that are too low (below 20\%, even partially below 35\%) can lead to flickering. Flickering can have a negative effect on the lifespan of the lamp similar to being switched on and off.
- When used with automatic switches (motion/presence detectors) the minimum switch-on time of an ESL must not be <5 minutes indoors or <10 minutes outdoors. This prevents frequent switching on and off and extends the service life of the light.

To avoid dimmable ESLs flickering or not coming on at all, it is always switched on with a high dimming value and then reduced to the desired brightness within a minute.
This has a compensating effect, as cold ESLs normally exhibit reduced brightness:
It can take up to 5 mins to reach full brightness, depending on manufacturer, type and ambient temperature.

To be able to dim dimmable ESL without problems the Theben dimmer DMG 2 T offers two special modes for dimmable energy saving lamps with RC or L-response. These modes also take account of the varying characteristic curve in comparison with the incandescent lamp, i.e. the relationship of the set percentage value to the emitted brightness in relation to maximum brightness.

Important:

Certain LED lights can no longer be dimmed, if they are controlled with a dimming value of $>\mathbf{9 0 \%}$.
In the case of DMG 2 T / DMG 2 E devices manufactured after 09.2013 these lights can also be dimmed. For these, the load selection LEDs (RC, 0-90 \%, from 09/2013) is used.

7.3.2 Selection of RC or L-response:

Alongside the recommendations of the ESL manufacturer, the following applies:

- RC-mode: Generally recommended for ESL, especially for high loads (advantage: less heat generated in the dimmer).
- L-mode:.

With ESL, only use if a disruptive flickering is noted when dimming up or down.

7.3.3 Dimmable energy-saving lamps with RC response (reverse phase control)

This setting allows dimmable energy-saving lamps with RC response to be dimmed.

The energy-saving lamp always starts with 100% output and then, if applicable, automatically dims down to 95% after 3 seconds. After another 30 s the ESL is warm enough and can be dimmed down to the minimum brightness.

- Minimum configurable minimum brightness = 1%. With energy-saving lamps, depending on type, a minimum brightness of $20 \% \ldots 35$ is sensible (below that the lamps flicker or go out completely).
- If the ESL is switched off in the warm state for less than 30 s , after being switched on again the heating phase will be shorter.
In this case the duration of the warm-up phase corresponds to the previous switch-off time.
- This configuration is optimal, for example, for MEGAMAN lamps.

This produces the following relation between the time elapsed since switch-on and the minimum possible dimming value:

No values are permitted in the hatched area independent of the requested dimming value.

Notice:

As connecting an L-load in RC mode could lead to functional problems with the dimmer load recognition will always be performed in the interests of safety.
The RC mode will only actually be used when no L-load is recognised.

7.3.4 Dimmable energy-saving lamps with L-response (phase control)

This setting allows dimmable energy-saving lamps with L response to be dimmed. No load recognition is performed; dimming is carried out with phase control instead.

- The energy-saving lamp always starts with at least 85% output and then, if applicable, automatically dims down to the minimum brightness after 1 second.
- Minimum configurable minimum brightness $=1 \%$. With energy-saving lamps, depending on type, a minimum brightness of 20%... 35% is sensible (below that the lamps flicker or go out completely).
- This configuration is optimal, for example, for OSRAM lamps.

This produces the following relation between the time elapsed since switch-on and the minimum possible dimming value:

No values are permitted in the hatched area independent of the requested dimming value.

Notes:

- Many types of lamp can cause an overload in L-mode, which automatically leads to the dimming down of the load.
- Because of impermissible radio interference some ESL may not be operated in L-mode.

In both cases automatic load recognition must be selected (i.e. RC mode).

7.4 Dim LED lamps

7.4.1 General

The dimmer may only operate LED lamps for 230 V mains operation (so-called retrofit lamps), which are exclusively identified as dimmable.

In dimming response, there are also manufacturer- and type-related differences. For that reason we recommend only operating lights of the same type in parallel on one channel.

- The maximum output per channel is 400 W (Trailing edge/RC-Mode), 60 W (Leading edge (L-Mode). In parallel operation both channels maximum 800 W (Trailing edge/RC-Mode), 120 W (Leading edge (L-Mode).
- The minimum output per channel is 5 W .

It may be necessary to adjust the "minimum dimming value" for each parameter.

7.4.2 Selection of RC or L-response:

Alongside the recommendations of the LED manufacturer, the following applies:
LEDs are typically operated in RC mode in order to reduce the activation currents of the lamps, which can lead to disruptions in the power network.
RC mode is therefore especially to be recommended at high outputs.
Another advantage: less heat is generated in the dimmer.

L-mode:

Only use LED if a disruptive flickering is noted when dimming up or down.

Notice:

Many types of lamp can cause an overload in L-mode, which automatically leads to the dimming down of the load.
Then in both cases automatic load recognition must be selected (i.e. RC mode).

7.5 4-bit telegrams (brighter/darker)

7.5.1 Telegram format 4-bit EIS 2 relative dimming:

Table 29

Bit 3	Bit 2	Bit 1	Bit 0
Direction	Dimming range divided into increments		
	Code	Increments	
Dim up: dim down:	1	000	Stop
	0	001	1
		010	2
	011	4	
	100	8	
	101	16	
	110	32	
	111	64^{*}	

*typical application
Examples: $\quad 1111=$ to make 64 levels brighter
0111 = decrease brightness by 64 levels
1101 = make 16 levels brighter

7.5.2 Parameter: "Switching on/off with a 4-bit telegram"

In general, the setting "Yes" is required.
The setting "No" is available for use with special customer requests, e.g. in conference rooms. The situation is described below.
A whole group of dimmer channels is operated from a button (4-bit).
A certain lighting situation has been adjusted by a scene or through other means - e.g. channel 1 OFF, channel 240%, channel 350%. The requirement is to now dim up and increase the brightness of the entire scene, but the channels which are switched off should remain off. The parameter "Switch on/off with a 4-bit telegram" blocks the usual switch on/off function of 4-bit telegram.

Table 30

Parameter: "Switching on/off with a 4-bit telegram"	4-bit Telegram	Dimmer output status	Response
yes	Brighter/darker	Switched on $(1 \% . .100 \%)$	Channel is dimmed in the normal fashion (to 0\%* or 100\% if applicable).
	Brighter	Off	Channel is switched on and dimmed
no	Brighter / darker	Off	Dimmer stays switched off
	Brighter / darker	Switched on $(1 \% \ldots 100 \%)$	Channel is dimmed in range from min. to 100%

* With the 4-bit telegram "Darker", the channel is switched off if the switch/button is kept depressed for longer than approximately $2 s$ when the minimum brightness is reached.

7.6 The scenes

7.6.1 Principle

The current status of a channel, or a complete MIX system
can be stored and retrieved as required at a later point via the scene function.
That applies to switching, blinds and dimming channels.
Each channel can participate simultaneously in up to 8 scenes.
This requires permission to access scenes for the relevant channel via parameter.
See Activate scenes parameter and Scenes parameter page.
The current status is allocated to the appropriate scene number when a scene is saved.
The previously saved status is restored when a scene number is called up.

This allows a MIX system to be easily associated with each chosen user scene.

Table 31: Permitted scene numbers

Series	Appliance	Supported scene numbers
MIX (order no. 4910xxx)	DME 2 S	$1 . .8$
	JME 4 S	
MIX2 (order no. 4930xxx)	RMG / RME 8 S	$1 . .64$
	RMG / RME 4 I	
	DMG 2 T / DME 2 T	

The scenes are permanently stored and remain intact even after the application has been downloaded again.
See parameter All channel scene statuses on the parameter page Scenes.

7.6.2 Select and save settings:

To call up or store a scene the relevant code is sent to the scene object (obj. 243).

Table 32

scene	Select		Save	
	Hex.	Dec.	Hex.	Dec.
1	\$00	0	\$80	128
2	\$01	1	\$81	129
3	\$02	2	\$82	130
4	\$03	3	\$83	131
5	\$04	4	\$84	132
6	\$05	5	\$85	133
7	\$06	6	\$86	134
8	\$07	7	\$87	135
9	\$08	8	\$88	136
10	\$09	9	\$89	137
11	\$0A	10	\$8A	138
12	\$0B	11	\$8B	139
13	\$0C	12	\$8C	140
14	\$0D	13	\$8D	141
15	\$0E	14	\$8E	142
16	\$0F	15	\$8F	143
17	\$10	16	\$90	144
18	\$11	17	\$91	145
19	\$12	18	\$92	146
20	\$13	19	\$93	147
21	\$14	20	\$94	148
22	\$15	21	\$95	149
23	\$16	22	\$96	150
24	\$17	23	\$97	151
25	\$18	24	\$98	152
26	\$19	25	\$99	153
27	\$1A	26	\$9A	154
28	\$1B	27	\$9B	155
29	\$1C	28	\$9C	156
30	\$1D	29	\$9D	157
31	\$1E	30	\$9E	158
32	\$1F	31	\$9F	159

Continuation:

scene	Select		Save	
	Hex	Dec.	Hex	Dec.
33	\$20	32	\$A0	160
34	\$21	33	\$A1	161
35	\$22	34	\$A2	162
36	\$23	35	\$A3	163
37	\$24	36	\$A4	164
38	\$25	37	\$A5	165
39	\$26	38	\$A6	166
40	\$27	39	\$A7	167
41	\$28	40	\$A8	168
42	\$29	41	\$A9	169
43	\$2A	42	\$AA	170
44	\$2B	43	\$AB	171
45	\$2C	44	\$AC	172
46	\$2D	45	\$AD	173
47	\$2E	46	\$AE	174
48	\$2F	47	\$AF	175
49	\$30	48	\$B0	176
50	\$31	49	\$B1	177
51	\$32	50	\$B2	178
52	\$33	51	\$B3	179
53	\$34	52	\$B4	180
54	\$35	53	\$B5	181
55	\$36	54	\$B6	182
56	\$37	55	\$B7	183
57	\$38	56	\$B8	184
58	\$39	57	\$B9	185
59	\$3A	58	\$BA	186
60	\$3B	59	\$BB	187
61	\$3C	60	\$BC	188
62	\$3D	61	\$BD	189
63	\$3E	62	\$BE	190
64	\$3F	63	\$BF	191

Examples (central or channel-related):
Select status of scene 5:
\rightarrow Send $\$ 04$ to the relevant scene object.
Save current status with scene 5:
\rightarrow Send $\$ 84$ to the relevant scene object.

7.6.3 Enter scenes without telegrams (MIX2 ONLY)

Instead of defining scenes individually by telegram, this can be done in advance in the ETS. This merely requires the setting of the All channel scene statuses parameter (Scenes) parameter page to overwrite at download.

Accordingly, the required status can be selected for each of the 8 possible scene numbers in a channel (= Status after download parameter).
The scenes are programmed into the device after the download has been completed.
Later changes via teach-in telegrams are possible if required and they can be permitted or blocked via a parameter.

7.7 Store light scenes in one button

Scenes are normally stored in the DMG 2 T .
Object 5 (call up/save scenes) is used for this purpose.
However, if the light scenes are to be stored externally, for example with a scene-capable switch, the following steps should be taken:
The DMG 2 T has one dimming object (dimming value) and one feedback object (feedback in \%) per channel.
2 group addresses are used here; hereafter referred to as "Gr.adr.1" and "Gr.adr.2".

7.7.1 Assignment of group addresses and setting for the object flag

	Object	Connect with	set to sending	Flags*			
				K	L	W	T
	Brightness value telegrams	Gr.adr. 1	yes	\checkmark	-	\checkmark	\checkmark
		Gr.adr. 2	no				
$\sum_{i}^{\frac{\alpha}{1}}$	Dimming value	Gr.adr. 1	X	\checkmark	-	\checkmark	X
	Feedback in \%	Gr.adr. 1	no	\checkmark	\checkmark	-	X
		Gr.adr. 2	yes				

[^1]Feedback to the dimmer should not be configured for cyclical sending.

7.7.2 Functional description

Save scenes:

The touch sensor sends a read request to Gr.adr. 1 which is only answered by the "Feedback in \%" object and with Gr.adr.2.
Gr.adr. 2 is not processed by the object "dimming value".
In contrast, the touch sensor receives the value and saves it for the appropriate scene.

Calling a scene:

The touch sensor sends the value saved for the scene to the \% object with the sending address Gr.adr.1.
The value of the object "dimming value" is further processed to set the output brightness.
Once the dimmer has set the requested value, it sends feedback to the object "Feedback in \%" depending on the configuration.

7.8 Conversion of percentages to hexadecimal and decimal values

Table 33

percentage value	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Hexadecimal	00	1 A	33	4 D	66	80	99	B3	CC	E6	FF
Decimal	00	26	51	77	102	128	153	179	204	230	255

All values from 00 to FF hex. (0 to 255 dec.) are valid.

7.9 Maximum incandescent lamp load in parallel operation and in

 combination with the dimming booster DMB. 1 T
Parallel operation C1 + C2

C1 + DMB

700 W
$\mathrm{C} 1+\mathrm{DMB}+\mathrm{DMB}$

1000 W

Parallel operation C1 $+\mathrm{C} 2+\mathrm{DMB}+\mathrm{DMB}$

1400 W*

Parallel operation C1 + C2 + DMB + DMB + DMB

Parallel operation C1 + C2 + DMB + DMB + DMB + DMB

2000 W*

[^2]
7.10Function diagram

8 Operating instructions

HACOCN		
Universal dimming actuator in the MIX2 range		
DMG 2 T KNX (basic module)	4930270	KNX.
DME 2 T KNX (extension module)	4930275	
DMB 1 T KNX (performance upgrade)	4930279	

1. Designated use

The 2-way universal dimmer actuators in the MIX2 range switch and dim the brightness of different light sources such as incandescent lamps, halogen lamps, HV and LV halogen lamps (conventional or with electronic transformer), dimmable compact fluorescent lamps (energy-saving lamps) or dimmable LED lamps for 230 V .
The MIX2 range is a series of devices comprising basic modules and extension modules. Up to 2 MIX or MIX2 extension modules can be attached to a basic module in this range.

The ETS (Engineering Tool) can be used to select application programmes, allocate the specific parameters and addresses and transmit them to the device.
The device is designed for installation on DIN top hat rails (in accordance with EN 60715) and conforms with EN 60669-2-1. Only to be used in closed, dry rooms.

2. Safety instructions

\triangle WARNING

Danger of death through electric shock or fire!
> Installation should only be carried out by a professional electrician!

Please note the provisions of EN 50428 for switches or similar installation material for use in building systems technology with regard to the correct installation of bus lines and device start-up procedure.
Tampering with, or making modifications to, the device will invalidate the guarantee.

- Always operate electronic and conventional transformers with the minimum load designated by the manufacturer.
> Only use dimmable energy-saving lamps; normal energysaving lamps could be irreparably damaged.
- When replacing lamps, switch off the power supply (at the appropriate circuit breaker) to ensure automatic load detection can be reactivated and it is protected (must be enabled via the ETS).
> Do not connect dimmer load connections (L) in parallel (exception: parallel operation of channel 1 and channel 2)
> Do not bypass or short-circuit the dimmer.
> Do not install an isolation or adjustable transformer before the dimmer.
> Do not mix connection of wound and electronic transformers or energy-saving lamps and LED lamps to a channel.
$>$ Correct, automatic load detection is only possible with a connected load.
> Only use transformers approved by the manufacturer for dimmer operation.
> Do not connect inductive load (wound transformer, fan motor) if the RC load application has been set.
The dimmer can be destroyed.

3. Description

DMG 2 T KNX
(basic module)

DMB 1 T KNX (booster)

DME 2 T KNX (extension module)

© KNX bus module
(2) Manual push button man.
(2) Channel push buttons $\mathrm{C} 1-\mathrm{C} 2$ with dimming values of 0-100 \%
(4) Status LEDs
(3) Bus connection: Ensure correct polarity!
(6) Programming keys and LED for physical address
(2) Slide for locking KNX bus module (1) or the cover (8) (8) Cover
(2) Slidable plug between extension module and basic module

Status LED

LED 1	Dimming value up to 25 \%
LED 1 and 2	Dimming value $25 \%-50 \%$
LEDS 1,2 and 3	Dimming value $50 \%-75 \%$
LED 1, 2, 3, and 4	Dimming value from 75 \%
LEDs 2, 3 and 4 flash	Excess temperature
LEDS 1,2,3 and 4 flash	Short circuit

4. Installation

Basic module/extension module
$>$ Clip basic module on the distributor rail.
> Unlock © slide and remove (8) cover extension module.
$>$ Clip extension module to the distributor rail.
$>$ Push both modules tightly together.

$>$ Push (4) slide to the left.

- Replace cover.
- Relock cover (8) with slide.

KNX bus module

Basic module and KNX module can be separated mechanically. Manual start-up and operation of universal dimming actuators are possible without KNX bus module (1).

- Unlock KNX bus module (1) on basic module with slide (7) and remove or replace and lock.

Manual operation

(must be enabled via the ETS)
$>$ Press man. © key (LED lights up).
$>$ Press (3) channel keys.

Each channel can be operated via 4 channel buttons with dimming values of

- push button 1: On 25%, Off 0%
- push button 2:50\%,
- push button 3: 75%
- push button 4: 100%

5. Electrical connection

DMG 2 T KNX

DME 2 T KNX

Parallel operation
DMG 2 T KNX

* Incandescent lamp load

Performance upgrade
DMG 2 TKNX DMB 1 TKNX

Performance upgrade
DMG 2 TKNX DMB 1 T KNX

* Incandescent lamp load
\Rightarrow Maintain ventilation space of 8 mm right and left (with DMB 1 T KNX).
- The channels can be operated on different line conductors (with DMG 2 T KNX + DME 2 T KNX).
- The performance upgrade (DMB 1 T KNX) must only be operated on the same line conductor as the relevant channel of the dimmer (DMG 2 T KNX/DME 2 T KNX).

6. Technical data

DMG 2 T KNX/DME 2 T KNX

- Operating voltage: $230 \mathrm{~V} \mathrm{AC}+10 \%-15 \%$
- Frequency:

50 Hz

- Standby min.:

DMG 2 T KNX: 0,9 W
DME 2 T KNX: 0,6 W
DMB1 T KNX: 0,2 W

- Permissible ambient temperature: $-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
- Protection class: II subject to correct installation
- Protection rating: IP 20 in accordance with EN 60529
- KNX operating voltage: bus voltage, $\leq 10 \mathrm{~mA}$ (DMG 2 T KNX)
- Load types: R/L/C
- Incandescent lamp load: 400 W
- Inductive load: 400 W
- Electronic transformers: 400 W
- Max. load with dimmable energy-saving lamps: 80 W
- Max. load with dimmable 230 V LED lamps: 60 W
- Permissible load in parallel operation: Incandescent lamp load: $1 \times 800 \mathrm{~W}$ Energy-saving lamps: $1 \times 140 \mathrm{~W}$ dimmable 230 V LED lamps: $1 \times 120 \mathrm{~W}$
- Pollution degree: 2
- Rated impulse voltage: 4 kV

Observe deviating technical data on the device rating plate! Technical changes reserved.
The ETS database is available at www.theben.de Please refer to the KNX Handbook for detailed functional descriptions.

Service address	Hotline
Theben AG	Telephone $+49(0) 7474692369$
Hohenbergstr. 32	Fax $+49(0) 7474692207$
72401 Haigerloch	hotline@theben.de
DEUTSCHLAND	Addresses, telephone numbers etc.
Phone $+49(0) 7474 / 692-0$	www.theben.de
Fax $+49(0) 7474 / 692-150$	

Hhern	
Booster for Dimming	
DMB 1 T KNX (performance upgrade)	4930279

1. Designated use

The DMB 1 T KNX booster serves to upgrade the performance of universal dimming actuators of MIX 2 range up to 300 W per channel.

The boosters switches and dims the brightness of different light sources such as incandescent lamps, halogen lamps, HV and LV halogen lamps, (conventional or with electronic transformer) or dimmable LED lamps for 230 V .

The device is designed for installation on DIN top hat rails (in accordance with EN 60715) and conforms with EN 60669-2-1. Only to be used in closed, dry rooms.

2. Safety instructions

\triangle WARNING

Danger of death through electric shock or fire!
$>$ Installation should only be carried out by a professional electrician!

Tampering with, or making modifications to, the device will invalidate the guarantee.

- Always operate electronic and conventional transformers with the minimum load designated by the manufacturer.
- When replacing lamps, switch off the power supply (at the appropriate circuit breaker)
$>$ Do not bypass or short-circuit the dimmer.
> Do not install an isolation or adjustable transformer before the dimmer.
$>$ Do not mix wound and electronic transformers in the installation.
$>$ Correct, automatic load detection is only possible with a connected load.
$>$ Only use transformers approved by the manufacturer for dimmer operation.

3. Description

DMB 1 T KNX (performance upgrade)

- 1 channel for 5-300 W incandescent lamps
- For performance upgrade of DMG 2 T KNX and DME 2T KNX

DMB 1 T KNX (performance upgrade/ booster)

Status LED

LED flashes	mains on
LED flashes permanently	dimming
LED flashes quickly	error of excess temperature

4. Electrical connection

Performance upgrade up to $2 \times 700 \mathrm{~W}$

$>$ Maintain ventilation space of 8 mm right and left.

Performance upgrade up to 1000 W

* Incandescent lamp load
$>$ Maintain ventilation space of 8 mm right and left.

Performance upgrade up to 2000 W (parallel operation for dimmer)

* Incandescent lamp load
$>$ Maintain ventilation space of 8 mm right and left.
- Connect max. 2 boosters DMB 1 T KNX per dim channel.
$>$ Connect max. 4 boosters DMB 1 T KNX in parallel operation.

The performance upgrade must only be operated on the same line conductor as the relevant channel of the dimmer (DMG 2 T KNXIDME 2 T KNX).

6. Technical data

- Operating voltage: $\quad 230 \mathrm{~V} \mathrm{AC}+10 \%-15 \%$
- Frequency: 50 Hz
- Standby min.: 0.2 W
- Permissible ambient
temperature:
- Protection class:
- Protection rating:

Il subject to correct installation

- Load types: R/L/C
- Incandescent lamp load: 300 W
- Halogen lamp load: 300 W
- Inductive load: 300 W
- Electronic transformers: 300 W
- Max. load with dimmable 230 V LED lamps: 45 W
- Min. switching capacity: 5 W

Dimming outputs $>1000 \mathrm{~W}$ for professional use only

Observe deviating technical data on the device rating plate! Technical changes reserved.
The ETS database is available at www.theben.de

Please refer to the KNX Handbook for detailed functional descriptions.

Service address	Hotline
Theben AG	Telephone $+497474692-369$
Hohenbergstr. 32	Fax $+497474692-207$
72401 Haigerloch	hotline@theben.de
DEUTSCHLAND	Addresses, telephone numbers etc.
Phone $+497474692-0$	www.theben.de
Fax $+497474692-150$	

[^0]: * Adjusted parameter display and object numbering.

[^1]: * Object flag: Communication, read, write, transfer, update.
 x = user-defined

[^2]: * Dimming outputs > 1000W for professional use only

