Continuous valve actuator CHEOPS control incl. temperature control

CHEOPS control 732 9 201

Contents

1	Functional characteristics	4
	1.1 Operation	5
	1.2 Benefits of Cheops Control	6
	1.2.1 Special features	6
	1.3 Hardware versions	7
	1.4 Differences	8
2	Technical data	
	2.1 General	
3	The "CHEOPS control V1.2" Application Program	
-	3.1 Selection in the product database	
	3.2 Parameter pages	
	3.3 Communication objects	
	3.3.1 Object characteristics	
	3.3.2 Object description	
	3.4 Parameters	
	3.4.1 Settings	
	3.4.2 Set point values	
	3.4.3 Actual value	
	3.4.4 Heating control	
	3.4.5 Cooling control	
	3.4.6 Additional heating step	
	3.4.7 Operation	
	3.4.8 Operating mode	
	3.4.9 Device settings	
	3.4.10 External interface	
	3.4.11 Linear characteristic valve curve	
	3.4.12 Own characteristic valve curve	
4	Start-up	
т	4.1 Installation	
	4.2 Calibration strategies	
	4.2.1 Strategy 1, standard	
	4.2.2 Strategy 2, Automatic (only for devices from software version 63/ 61 drive)	
	4.2.3 Strategy 3, with defined valve stroke. (Only for devices from software version	
	63) 44	
	4.2.4 LED display during calibration run	45
	4.3 Site function	
5	Appendix	
5	5.1 Determining the current set point value	
	5.1.1 New operating modes	
	5.1.2 Old operating modes	
	5.1.2 Set point value calculations	
	5.2 Set point value offset	
	5.2.1 Incremental set point temperature adjustment via keys	
	5.2.1 Incremental set point temperature adjustment via Object 6	
	5.2.2 Direct set point temperature adjustment via Object 1	
	5.3 External interface	
	5.3.1 Connections	

5.3.2 Input E	51	
5.3.3 Input E	E2	53
5.4 Monitorir	ng the actual value	54
5.4.1 Applica	ation	54
5.4.2 Princip	ple	54
5.4.3 Practice	ze	54
5.5 Valves an	nd valve seals	
5.5.1 Valve s	structure	56
5.5.2 Valves	and valve seals	
	actuating value	
5.6.1 Minim	um actuating value	57
5.7 Determine	e the maximum actuating value	
5.7.1 Applica	ation	
5.7.2 Princip	ple	58
5.7.3 Practice	e	58
5.8 2-step hea	ating	59
1	ture control	
	action	
5.9.2 Respon	nse of the P-control	61
1	nse of the PI-control	
	ng	
	current valve position	
	error code	65
	g end position	
	g adapter ring	
	the software version number	
	point value	
•	is	
	bus and switching control	
	ne	
7.5 Valve stro	oke	71

1 Functional characteristics

The Cheops control drive actuator is both a continuous EIB room temperature controller and an actuator, i.e. Cheops control measures the current room temperature (actual value) and controls the radiator valve, in order to achieve the desired room temperature (set point value).

The valve position can be transferred on the bus. If a room accommodates several radiators, these can be equipped with "Cheops drive" actuators and actuated by Cheops control.

In addition to the heating system, Cheops control can also control a cooling system.

In order to simply adapt to the set point values in respect of living comfort and energy saving, Cheops control has 4 operating modes:

- Comfort
- Standby
- Night mode
- Frost protection mode

A set point value is assigned to each operating mode.

Comfort mode is used when the room is occupied

In **Standby mode**, the set point value is reduced slightly. This operating mode is used when the room is not occupied but is expected to be shortly.

In **Night mode**, the set point value is drastically reduced, since the room is not expected to be occupied for several hours.

In **Frost protection mode**, the room is controlled to a temperature that eliminates the risk of damage to the radiators through freezing at low outdoor temperatures:

This can be desirable for 2 reasons:

- The room is not occupied for several days.

- A window has been opened and no further heating is required for the time being.

The operating modes are usually controlled by a timer.

For optimum control, however, presence indicator and/or presence button and window contacts are recommended.

See also Chapter headed "Determining the current set point value".

1.1 Operation

For operation and display functions, Cheops control is fitted with 5 LEDs, a blue and a red button. The top 3 LEDs are red, the bottom 2 LEDs are blue. The LEDs show the set point temperature, i.e. the desired room temperature.

The middle LED illuminates when the temperature determined by the <u>Basic set point</u> value has been reached.

The 2 buttons can be used to adapt the set point value to suit the individual requirements of the room user.

Pushing the red button increases the set point value by one <u>programmed increment</u>, this is possible twice from the basic set point value (middle LED).

Pushing the blue button reduces the set point value by increments.

If Cheops control is not in comfort mode, or if the set point value has already been decreased by 2 increments from the basic set point value, the bottom LED illuminates. This indicates to the room user that the set point value cannot be further decreased.

When the red button is pushed, Cheops control automatically finds the correct function that increases the set point value - this depends on the operating mode prior to the button being pushed:

Operating mode prior to pushing the red button	Effect of pushing the red button
Comfort mode	Set point value increased by one increment
Standby	Switches to comfort operating mode by setting the presence object - without time limit
Night and frost protection	Switches to comfort operating mode by setting the presence object – for set time and comfort extension (see "Comfort extension in night mode" on the " <u>Operating mode</u> " parameter page)

Table 1

In comfort mode, the set point value can now be changed in increments as usual.

If the blue button is pressed until the bottom blue LED illuminates, the presence object is reset and the original operating mode is restored.

1.2 Benefits of Cheops Control

- Continuous <u>P/PI room temperature control</u>
- Heating mode + actuation of a cooling system via the EIB
- Alternative actuation of a <u>second heating step</u> with switching or continuous actuating value
- 2 buttons for <u>set point offset</u> (up to +/- 3K)
- Infinite valve adjustment through <u>continuous actuating value</u>
- Internal temperature measurement possible via either EIB or an <u>external temperature</u> <u>sensor</u>
- Valve position or set point value offset readout
- Emergency program on <u>actual value failure</u>
- Establishing the <u>maximum actuating value</u>
- Valve protection program
- <u>External interface</u> for window and presence contacts
- Actuating value limitation
- Precise <u>adjustment</u> to each valve
- Operation with both standard and inverted valves
- <u>Site function</u> for operation without application
- Large valve stroke enables adjustment to almost all valves
- Simple assembly with any valve adapter

1.2.1 Special features

• <u>Monitoring</u> of actual value

If the room temperature is measured via an external sensor or received via an object, Cheops control can start an emergency program if the sensor or temperature transmitter fails.

• Determining the <u>maximum actuating value</u> (= maximum position)

To adapt the forward flow temperature, Cheops drive can send an acknowledgement to the heating boiler regarding the current power requirement.

This can reduce its temperature if the requirement drops.

• <u>Window and presence contact inputs</u>

Cheops drive has 2 external inputs, one for a presence contact and one for a window contact. These inputs can be used as an actuator for frost protection or comfort mode.

1.3 Hardware versions

There are 2 hardware versions of Cheops, *up to* 2008 and *from* 2008, with some different features.

The version up to 2008 (left) has two circuit boards mounted at right-angles to each other. The version from 2008 (right) only has one circuit board.

The different features of the two versions are indicated in this manual by "*up to 2008*" and "*from 2008*".

Distributed software (firmware) versions (displayed by the LEDs see <u>Reading the software</u> <u>version number</u>):

Devices up to 2008	Devices from 2008
V110	V44 since March 2008
V121	V63 since December 2008

1.4 Differences

Devices up to 2008	From 2008: Version V 44	From 2008: from V63 / V61 drive
 Only one calibration strategy The former positions are adopted after reset (small calibration) Valve protection every 24 hours if there is no change in actuating value. Site function always active (25% after adjustment) Error code in \$1FB Continuous light with known errors 	 New calibration strategy: End position via force with fixed stroke. Cheops always performs two calibration runs and compares the results Site function is fully deleted after the first download. No more error codes Changed LED display during calibration run Corrective measures are automatically started in the event of an error. 	 New calibration strategy: Starting point as position, end point via force. Valve protection only every 7 days Calibration strategy code filed in address in \$1FB (N.B.: Number can look like the earlier error codes).

2 Technical data

2.1 General

Voltage supply:	Bus voltage
Permitted working temperature:	0°C+ 50°C
Runtime:	< 20s / mm
Controlling torque:	> 120 N
Max. control stroke:	7.5 mm (linear movement)
Detection of valve limit stops:	Automatic
Linearisation of characteristic valve curve:	Possible via software
Protection class:	III
Protection rating:	EN 60529: IP 21
Dimensions:	HxWxD 82 x 50 x 65 (mm)
Adapter rings suitable for:	Danfoss RA, Heimeier, MNG, Schlösser from 3/93, Honeywell, Braukmann, Dumser (Distributor), Reich (Distributor), Landis + Gyr, Oventrop, Herb, Onda
Typical power consumption	Motor off:

3 The "CHEOPS control V1.2" Application Program

3.1 Selection in the product database

Manufacturer	Theben AG
Product family	Valve actuators
Product type	Valve actuator with controller
Program name	Cheops control V1.2

Download the application from: <u>http://www.theben.de</u>

3.2 Parameter pages

Function	Description	
<u>Settings</u>	Selection of control functions,	
	standard and user-defined settings	
Device settings	Valve characteristics, fine setting of valve parameters, special	
	characteristic valve curves, valve protection	
<u>Set point values</u>	Set point value after loading the application, values for	
	night/frost mode, dead zone, additional step etc.	
Operation	Function of LEDs and buttons	
Actual value	Selection, calibration, emergency program on failure	
Heating control	Heating parameters, controller type, actuating value limits etc.	
Cooling control	Cooling parameters, controller type etc.	
Operating mode	Presence and window status considered.	
	Operating mode after download	
External interface	Configure inputs for window / presence contact and actual value	
Additional heating step	Control parameters, hysteresis reduction, bandwidth etc.	
Own characteristic curve	Prof. parameters for valves with known characteristic curve	
of valve		
linear characteristic valve	Parameters for high-end linear valve	
<u>curve</u>		

3.3 Communication objects

3.3.1 Object characteristics

Cheops control features 12 communication objects.

Objects 2, 3, 4, 5, 6 and 8 can assume various functions, depending on the configuration

No.	Function	Object name	Туре	Response
0	Define set point temperature	Basic set point value	2 byte EIS5	Receive
1	shift set point temperature	Manual shift of set point value	2 byte EIS5	Send / Receive
2	Transmit actual value	Actual value	2 byte	Send
2	Input actual value		EIS5	Receive
3	Pre-selection of operating mode	Pre-selection of operating mode	1 byte KNX	Receive
5	1 = night, 0 = standby	Night < - > Standby	1 bit	
4	Input for presence signal	Presence	1 bit	Send / receive
	1 = comfort	Comfort	1 bit	Receive
5	Input of window state	Window state	1 bit	Send / receive
-	1 = frost protection	Frost/heat protection	1 bit	Receive
	1 = decrease/0 = increase	adjustment of set point temperature	1 bit	Receive
6	Calculates maximum actuating value	maximum actuating value	1 byte EIS6	Send / receive
	0100%	Actual valve position	1 byte EIS6	Send
7	Current actuating value heating	actuating value heating	1 byte EIS6	Send
	Actuating value in cooling mode	actuating value cooling	1 byte EIS6	Send
8	Switching actuating value	Actuating value of additional heating	1 bit	Send
	Continuous actuating value	Actuating value of additional heating	1 byte EIS6	Send
9	Transmit	Current set point value	2 byte EIS5	Send
10	Transmit	Current operating mode	1 byte KNX	Send
11	Heating/cooling	Switchover	1 bit	Receive

3.3.2 Object description

• Object 0 "Basic set point value"

The <u>Basic set point</u> value is first specified via the application at start-up and stored in the "Basic set point value" object.

It can then be re-specified at any time via Object 0.

If the bus voltage fails, this object is backed up and the last value is restored when the bus voltage returns.

• Object 1 "<u>Manual shift of set point value</u>"

The object sends and receives a temperature differential in EIS 5 format. The desired room temperature (current set point value) can be adjusted from the <u>Basic set point value</u> by this differential.

The following applies in comfort operation (heating):

current set point value (Obj. 9 = Basic set point value (Obj. 0) + manual set point value offset (Obj. 1)

This value can be changed in increments by pressing the buttons on the device or via Object 6. The value thus changed is then sent.

It is, however, possible to send the set point value offset directly to this object, this set point value offset is then indicated on the LEDs.

Values outside the programmed range are not taken into consideration.

The offset always relates to the <u>basic set point value</u> that is either configured or programmed via 0 and not the current set point value.

• Object 2 "Actual value"

The function of this object depends on the "Input for actual value" parameter on the "<u>Actual</u> value" parameter page.

Table 4	•
---------	---

Selection: Input for actual value	Function
Internal sensor	Sends the temperature currently being measured by the
External sensor (Interface E2)	sensor (if sending through configuration is permitted)
Actual value object	Receives the current room temperature from an external
	EIB temperature sensor via the bus

• Object 3 "Pre-selection of operating mode" / "Night <-> Standby"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>Operating mode</u>" parameter page.

Table 5

Objects for determining the operating mode	Function
New: Operating mode, presence	With this setting, the object is a 1 byte object. One
window, window status	of 4 operating modes can be directly activated.
	1 = comfort, 2 = standby, 3 = night,
	4 = frost protection (heat protection)
	The details in brackets relate to the cooling
	operation
Old: Comfort, night, frost	With this setting, the object is a 1 bit object. Night
	or standby operating mode can be activated.
	0=standby 1=night

* If a different value from 1...4 is sent to object 3, then operating mode 1 = comfort is adopted

• Object 4 "Presence / comfort"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>Operating mode</u>" parameter page.

Objects for determining the operating mode	Function
<u>New:</u> Opertaing mode, presence	The status of a presence indicator (e.g. sensor,
window, window status	movement indicator) can be received via this object.
	A 1 on this object activates the comfort operating
	mode.
	If a presence indicator is connected to <u>Interface E2</u> ,
	its status is sent via this object to the bus.
Old: Comfort, night, frost	A 1 on this object activates the comfort operating
	mode.
	This operating mode takes priority over night and
	standby operation.
	Comfort operation is deactivated by sending an 0 to
	the object.

• Object 5 "Window state" / "Frost/heat protection"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>Operating mode</u>" parameter page.

Table '	7
---------	---

Objects for determining the operating mode	Function
<u>New:</u> Operating mode, presence window, window status	The status of a window contact can be received via this object. A 1 on this object activates the frost / heat protection operating mode. If a window contact is connected to <u>Interface E1</u> , its status is sent via this object to the bus.
Old: Comfort, night, frost	A 1 on this object activates the frost protection operating mode. During the cooling operation, the heat protection mode is activated. The frost/heat protection operating mode takes top priority. The frost/heat protection mode remains until it is cleared again by a 0.

• Object 6 ,, "adjustment of set point temperature" / "maximum actuating value" / "Actual valve position"

The function of this object depends on the "Function of Object 6" on the "<u>Device setting</u>" parameter page.

Table 8

Function of Object 6	Function
Increases / decreases the set point value	This object can increase or decrease the <u>current set</u>
	point value in increments.
	A 0 on the object results in an increase in the set
	point value and is equivalent to pressing the red
	button.
	A 1 on the object results in a decrease in the set
	point value and is equivalent to pressing the blue
	button.
	The increment is set on the "Operation" parameter
	page. The achieved offset can be reported by
	Object 1.

Function of Object 6	Function
Determine the maximum actuating value	 This object has 2 functions here: 1. Receives actuating values from the other actuators (other rooms), in order to be able to compare them with its own.
	 2. Sends its own actuating value to the heating boiler, if it is higher than the others. (See also: <u>Determining maximum actuating value</u>)
Sends the actual valve position	Sends the current valve position (0100%). This function can be enabled (e.g. diagnosis) as and when required. This function is not required for normal operation.

Continued:

• Object 7 "Current actuating value, heating"

This object is present only when selected on the "<u>Heating control</u>" page as follows.

Ubjekt Stellgroße Heizen	vorhanden 💌	

The current actuating value (0...100%) can then be sent to other continuous actuators (Cheops drive) in the same room/control circuit.

If you wish to read out Object 7 via the bus, Object 8 must not be present (''Used control functions'' on the ''<u>Settings</u>'' parameter page set to ''Heating control only''). The ''Read'' flag must be set.

If you wish to read out Object 8 via the bus, this parameter must be set to "Not present".

• Object 8 "actuating value cooling"/"Actuating value of additional heating"

The function of this object depends on the "Input for actual value" parameter on the "<u>Settings</u>" parameter page.

Used control functions	Function
Heating and cooling	Sends the cooling actuating value to control a
	cooling ceiling, fan coil unit etc.
2-step heating with switching additional	Sends the switching command to control the
step	additional step (on/off)
2-step heating with continuous	Sends the continuous actuating value to control the
additional step	additional step (0100%)

Note:

In the "Heating control" setting, the object is not available because neither the cooling function nor the additional step are present.

If you wish to read out Object 8 via the bus, Object 7 must be hidden (see above) and the "Read" flag must be set.

• Object 9 "Current set point value"

This object sends the <u>Current set point temperature</u> as a EIS 5 telegram (2 bytes) on the bus. The send response can be set on the "Heating control" parameter page.

• Object 10 "Current operating mode"

This object sends the current operating mode as a 1 byte value. The send response can be set on the "Operating mode" parameter page. The operating modes are coded as follows:

Table 10

Value	Operating mode
1	Comfort
2	Standby
3	Night
4	Frost protection/heat
	protection

• Object 11 "Switchover"

This object is available if an automatic switching between heating and cooling is not required. **The setting is made on the** "<u>Cooling control</u>" **parameter page**

Umschalten zw. Heizen und Kühlen über Objekt	· · · · ·		
	Umschalten zw. Heizen und Kühlen	über Objekt	•

The cooling operation is forced via a 1 and the heating operation via a 0.

3.4 Parameters

3.4.1 Settings

Designation	Values	Meaning
Control	Standard	For simple applications
	User-defined	For specific setting of the
		control parameters and special
		applications such as
		heating/cooling or
Control functions		2nd heating step. User-defined control:
Control functions		User-defined control:
	Heating control only	Heating operation only
	Heating and cooling	A cooling unit can also be controlled via the bus (Object 8)
	<u>2-step heating</u> with switching additional step	A main step (typically floor heating) and an additional step (On/Off) can be controlled.
		A main step (typically floor
	2-step heating with continuous	heating) and an additional
	additional step	step (radiator) can be
		controlled.
Operation		Function of keys and LEDs.
		Default setting
	Standard	d d d d d d d d d d d d d d d d d d d
		Opens the parameter page
	User-defined	" <u>Operation</u> "
Operating mode	Standard	Default settings
	Lisen defined	One was the many set of the set
	User-defined	Opens the parameter page " <u>Operating mode</u> "
		<u>Operating mode</u>

Designation	Values	Meaning
Device settings	Standard	Default settings
	User-defined	Opens the parameter page
		Device settings
Function of external	None	Specifies whether the external
interface	E1: Window contact, E2:	interface is occupied by
	Presence	window presence contact or
	E1: Window contact, E2: Actual	an external temperature
	value	sensor is connected.
	E1: Window contact, E2: None	Note:
		IF E2 is declared as actual
		value input, the "Input for
		actual value" selection cannot
		be changed on the "Actual
		value" parameter page.

3.4.2 Set point values

Designation	Values	Meaning
Basic set point value after	18 °C, 19 °C, 20 °C,	Output set point value for the
download of application	21 °C, 22 °C, 23 °C,	temperature control.
	24 °C, 25 °C	
Reduction in standby	0,5 K, 1 K, 1,5 K	Example: with a basic set
operating mode at heating	2 K , 2.5 K, 3 K	point value of 21° and a
	3,5 K, 4 K	2K reduction in heating
		operation, Cheops control
		controls at a set point value of
		$21 - 2 = 19^{\circ}C$
Reduction in night operating	3 K, 4 K, 5 K	By what value should the
mode at heating	6 K, 7 K, 8 K	temperature be reduced in
		night mode?
Set point value for frost	3 °C, 4 °C, 5 °C	Preset temperature for frost
protection mode	6°C , 7 °C, 8 °C	protection operation in
	9 °C, 10 °C	heating mode
		(Heat protection operation
		applies in cooling mode).
Transmission of current set		How often should the
point values		currently valid <u>Set point value</u>
		be sent?
	No cyclical transmission	Send only at a change.
	Every 2 min	Send cyclically
	Every 3 min	
	Every 5 min	
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	

Designation	Values	Meaning
Para	meters for heating / cooling open	ration
Dead zone between heating and cooling	1 K, 1,5 K, 2 K, 2,5 K, 3 K, 3,5 K 4 K, 4,5 K, 5,5 K 6 K	Specifies the interval between set point value in heating and cooling operations. Example with set point value of 21°C and <u>Dead zone</u> of 2K: Cheops will only start cooling when the temperature \geq Set point value + Dead zone is, i.e. 21°C + 2K = 23°C.
Increase in standby mode at cooling	0,5 K, 1 K, 1,5 K 2 K , 2.5 K, 3 K 3,5 K, 4 K	The temperature is increased in standby mode during cooling operation
Increase in night mode at cooling	3 K, 4 K, 5 K 6 K, 7 K, 8 K	See increase in standby mode
Set point value for heat protection at cooling	42 °C (no heat protection) 29 °C, 30 °C, 31 °C 32 °C, 33 °C, 34 °C 35 °C	The heat protection represents the maximum permitted temperature for the controlled room. It performs the same function on cooling as frost protection mode on heating, e.g. saves energy while prohibiting non-permitted temperatures Important: In principle, Cheops control will not allow a set point value above 42°C (even via bus set point value definition)

Designation	Values	Meaning
Current set point value in comfort mode		Feedback of current set point value via the bus:
	Transmit mean value between heating and cooling	Same value in comfort operation mode during both heating and cooling operation, i.e.: <u>Basic set point value</u> + half dead zone sent, to prevent room users becoming irritated. Example with basic set point value of 21°C and dead zone of 2K:
	Transmit actual	Mean value= $21^{\circ}+1K = 22^{\circ}C$ Although control takes place at $21^{\circ}C$ and/or $23^{\circ}C$
	temperature setpoint	
	(Heating < > Cooling)	The set point value actually being controlled is always sent. Example with basic set point value of 21°C and dead zone of 2K: During heating and cooling, 21°C and basic set point value + dead zone are sent respectively $(21°C + 2K = 23°C)$
Differential hatroor main	Parameters for <u>2-step heating</u>	Suggifiers the propositive internal
Differential between main step and additional step	1 K , 1,5 K, 2 K, 2.5 K, 3 K, 3.5 K, 4 K	Specifies the negative interval between the current set point value and the set point value of the additional step. Example with basic set point value of 21°C and 1K differential: Main step controls using the basic set point value and the additional step controls using the basic set point value $-1K$ = 20°C

Continued:

3.4.3 Actual value

Designation	Values	Meaning
Input of actual value		Cheops control can obtain its actual value from three sources. Selection can be made from 2 such sources:
	Internal sensor object Actual value	fitted sensor bus (Object 2).
	object ricitian vanue	An external sensor can be selected via the "Function of external interface" parameter on the <u>Settings</u> parameter page. In this case, there is no option to select between internal sensor and actual value object.
Temperature offset for internal sensor (in 0,1K, -6463)	Manual input -64 63	Positive or negative correction of measured temperature in $1/10$ K increments Example: Cheops sends 20.3° C. A room temperature of $21.,0^{\circ}$ C is measured using a calibrated thermometer. In order to increase the temperature of Cheops to 21° C, an "7" (i.e. 7 x 0.1K) must be entered. Cheops sends 21.3° C. 20.5° C is measured. In order to reduce the temperature of Cheops to 20.5° C, an "-8" (i.e8 x 0.1K) must be entered.
Transmission of actual value at change	Does not send	Is the current room temperature to be sent? If so, from which minimum
	by 0,2 K, 0,3 K	change should this be sent
	by 0.5 K , 0.7 K	again?
	by 1 K, 1.5 K	This setting keeps the bus
	2 K	load as low as possible.

Continued:

Designation	Values	Meaning
Transmission of actual value	no cyclical transmission	How often should the values
	Every 2 min	be sent, regardless of the
	Every 3 min	temperature changes?
	Every 5 min	
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	
	Parameters for external sensors	
Temperature offset for	Manual input -64 63	See above, Temperature
external sensor (in 0.1K, -		offset for internal sensor
6463)		
Position in case of failure of	0%	Cheops control continuously
actual value or sensor	10%	monitors the function of the
	20%	external sensor when selected.
	30%	If the line to this sensor is
	40%	interrupted or short-circuited,
	50%	Cheops control can either
	60%	assume a fixed position
	70%	(emergency program) or
	80%	switch to an integrated sensor
	90%	until the fault is cleared.
	100%	
	Continued control with	
	internal sensor	

3.4.4 Heating control

Designation	Values	Meaning
Setting of control parameters	Via type of system	Standard application
	User-defined	Prof. application Self-
		configure <u>P/PI control</u>
Type of system		PI control with:
	Radiator heating	Integrated time = 150 minutes
		Bandwidth = 4 k
	floor heating	Integrated time $= 210$ minutes
	noor nearing	Bandwidth = 6 k
Minimum actuating value in	0%, 5%, 10%	Smallest permitted actuating
heating mode	15%, 20%, 25%	value (Exception: actuating
	30%, 40%	value of 0% is always used)
Behaviour at minimum	0%	Run to 0% as soon as the
actuating value underflow		defined min. actuating value
(heating mode)		is underrun.
	0 % = 0 % otherwise min.	Runs to the min. actuating
	actuating value	value as long as the value is
		greater than 0% and smaller
		or equivalent to the min.
		actuating value. However, if a actuating value
		of 0%
		is required (set point
		temperature reached), Cheops
		control returns to 0%.
Object "actuating value	available	The heating actuating value is
heating"		not to be sent on the bus
		(Object 8 can be read).
		The heating actuating value is
	not available	required to control other
		actuators (Cheops drive).
		Object 7 is added.
Transmission of actuating	At change by 1%	After how many % change*
value heating	At change by 2 %	in the actuating value is the new value to be sent.
	At change by 3 % At change by 5 %	new value to be sent. Small values increase control
	At change by 7 %	accuracy but also the bus
	At change by 10 %	load.
	At change by 15 %	10.00
	110 millige 0 y 13 /0	

Designation	Values	Meaning
Transmission of actuating	no cyclical transmission	How often is the current
value heating	Every 2 min	heating actuating value to be
	Every 3 min	send, regardless of changes?
	Every 5 min	
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	
	User-defined parameters	
Proportional band of heating	2 K , 2.5 K, 3 K	Prof. setting to adapt the
control	3,5 K, 4 K, 4,5 K	control response to the room.
	5 K, 5,5 K, 6 K	
	6.5 K, 7 K, 7.5 K	
	8 K, 8.5 K	
Integral action time constant	Only proportional controller	see Appendix
of heating controller		Temperature control
	30 min, 45 min, 60 min	For PI control only:
	75 min, 90 min, 105 min	The integrated time
	120 min, 135 min, 150 min	determines the reaction time
	165 min, 180 min, 195 min	of the control.
	210 min, 225 min	For radiators, times of approx.
		150 min and for floor heating,
		longer times of approx. 210
		min are recommended.
		These times can be adapted to
		suit particular circumstances.
		If the heating is over-
		dimensioned and therefore too
		fast, shorter values should be
		used. Conversely, under-
		dimensioned heating (slow)
		benefits from longer
		integrated times.

*Change since last sending

3.4.5 Cooling control

Designation	Values	Meaning
Setting of control parameters	Via type of system	Standard application
	User-defined	Prof. application Self-
		configure P/PI control
Type of system		<u>PI control</u> with:
	Cooling ceiling	Integrated time = 90 minutes
		Bandwidth = 4 k
	Fan Coil Unit	Integrated time = 180 minutes
		Bandwidth = 4 k
Transmission of actuating	On change by 1%	After how many % change*
value cooling	On change by 2 %	in the actuating value is the
	On change by 3 %	new value to be sent.
	On change by 5 %	Small values increase control
	On change by 7 %	accuracy but also the bus
	On change by 10 %	load.
	On change by 15 %	
Switch over between heating	Automatically	Cheops control automatically
and cooling		switches to cooling mode
		when the actual temperature is above the threshold:
		set point value + dead zone.
		Cooling mode can be
	via object	activated only on the bus side
		via <u>Object 11</u> (1= cooling).
		Cooling mode remains off for
		as long as this object is reset
		(=0).
	User-defined parameters	
Proportional band of cooling	2 K, 2,5 K, 3 K	Prof. setting to adapt the
controller	3,5 K, 4 K , 4,5 K	Control behaviour to the
	5 K, 5,5 K, 6 K	room.
	6.5 K, 7 K, 7.5 K	Large values cause finer
	8 K, 8.5 K	changes to the actuating
		values with the same control
		deviation and a more precise
		control than smaller values.

Designation	Values	Meaning
Integral time of the cooling	Pure P control	see Appendix
controller		Temperature control
	30 min, 45 min, 60 min	For <u>PI control</u> only:
	75 min, 90 min , 105 min	The integrated time
	120 min, 135 min, 150 min	determines the reaction time
	165 min, 180 min, 195 min	of the control.
	210 min, 225 min	
		These times can be adapted to
		suit particular circumstances.
		If the cooling system is over-
		dimensioned and therefore too
		fast, shorter values should be
		used. Conversely, under-
		dimensioned cooling (slow)
		benefits from longer
		integrated times.

Continued:

*Change since last sending

3.4.6 Additional heating step

See also Appendix: <u>2-step heating</u>

Table	16

Designation	Values	Meaning
Hysteresis	0,3 K	Interval between the switch-
	0,5 K	off point (set point value) and
	0,7 K	the re-switch on point (Set
	1 K	point value – hysteresis).
	1.5 K	The hysteresis prevents
		constant switch on/off.
Feedback of hysteresis	None	The feedback causes a
controlled with switch point	0,1 K/min	gradual decrease in the
	0,2 K/min	Hysteresis over time.
	0.3 K/min	This increases control
		accuracy.
		The hysteresis is equivalent to
		the programmed value for
		each switch-off and is
		gradually reduced by the
		feedback process. The
		hysteresis can reduce to 0
		over prolonged periods of
		switch-off.
		At the next switch-on, it is
		reset to the configured value.
Cyclical transmission of	No cyclical transmission	How often should the
additional heating system	Every 2 min	switching status of the
	Every 3 min	additional step be sent?
	Every 5 min	
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	

Designation	Values	Meaning	
Parameters for continuous additional step			
Proportional band of	2 K, 2,5 K, 3 K	Prof. setting to adapt the	
additional heating system	3,5 K, 4 K , 4,5 K	control response to the room.	
	5 K, 5,5 K, 6 K	Large values cause finer	
	6.5 K, 7 K, 7.5 K	changes to the actuating	
	8 K, 8.5 K	values with the same control	
		deviation and a more precise	
		control than smaller values.	
Transmission of actuating	On change by 1%	After how many % change*	
value of additional heating	On change by 2 %	in the actuating value is the	
system	On change by 3 %	new value to be sent.	
	On change by 5 %	Small values increase control	
	On change by 7 %	accuracy but also the bus	
	On change by 10 %	load.	
	On change by 15 %		

Continued:

*Change since last sending

3.4.7 Operation

Designation	Values	Meaning
Function of LEDs	None	The LEDs are always off
	Indication of set point value shift	The middle LED illuminates if no offset has been entered. The remainder indicate an upward or downward <u>offset</u> <u>increment</u>
	Fixed indication of position	The 5 LEDs show the current valve position as follows (from bottom to top): All OFF: Position 0% 1st LED: Position > 020% 2nd LED: Position > 2000,40% 3rd LED: Position > 4000,60% 4th LED: Position > 6000,80% 5th LED: Position >
	Time-limited display of set point val. shift	800.100%
		The current set point value offset is displayed for 10s after a key is pressed. Otherwise, all LEDs remain off.
Function of push buttons	Enabled	The keys can be operated. Hint: Pushing both keys at the same time displays the current valve position on the LEDs (see above, fixed position display).
	Disabled	Safeguards against undesired operation

Continued:

Designation	Values	Meaning
Maximum shift of set point	+/-1 K (1 push button stroke	What is the max. amount by
value	corresponds to 0,5 K)	which the the set point value
		can be <u>changed</u> and how large
	+/-2 K (1 push button stroke	is the change at each
	corresponds to 1,0 K)	increment/key pressure?
	+/-3 K (1 push button stroke corresponds to 1,5 K)	
	+/-4 K (1 push button stroke corresponds to 2,0 K)	
	+/-5 K (1 push button stroke corresponds to 2.5 K)	

3.4.8 Operating mode

Designation	Values	Meaning
Objects to select operating	New: Operating mode,	Cheops control can also
mode	presence, window state	respond to window and
		presence contact.
	Old: Comfort, night, frost	Conventional setting
Operating mode after	Frost protection	Operating mode after start-up
download of application	Night reduction	or re-programming.
	Standby	
	Comfort	
Type of presence sensor		The presence sensor activates
(on <u>Obj. 4</u> or <u>Ext. interface</u>)		comfort mode
	Presence detector	Comfort mode as long as
		presence is detected
	Push button	1. The presence object is
		reset on change of
		operating mode
		definition object
		(Object 3).
		2. If the presence object
		is set during night
		operation, it is reset after the configured
		comfort extension
		finishes (see below).
Comfort extension during	None	Party switching:
night operation	30 min	enables the red key or
(with presence key)	1 hour	presence key to switch
(with presence key)	1,5 hours	Cheops control from night to
Comfort mode extension via	2 hours	comfort mode for a certain
red push button in night mode	2,5 hours	period.
rea push oution in inght mode	3 hours	periou.
	3.5 hours	
	5.5 110415	

Designation	Values	Meaning
Transmission of current	No cyclical transmission	How often should the current
operating mode	Every 2 min	operating mode be sent?
	Every 3 min	
	Every 5 min	
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	

3.4.9 Device settings

Designation	Values	Meaning
Direction of control action of valve	Normal (closed with pushed tappet) Inverted, (open with pushed	For all standard valves Adjustment to inverted valves
	tappet)	
Strategy for identifying valve	Standard	Standard identification for most valve models.
	Automatic	Only for devices from software V63.
		The valve is closed with a pre-defined force (see below, "Closing force for" parameter). The 0 % position is checked at the valve with every run and the "100 % open" position is measured at the valve.
	With defined valve stroke	Only for devices from software V63.
		The 0 % position is checked at the valve with every run and the 100 % (open) position is established from the set stroke.

Continuation:

Designation	Values	Application
	Strategy = Standard	
Additional pressing of rubber seal in 1/100mm	079 (Default = 20)	The set value determines the additional pressing in 1/100 mm. This allows the valve to be further closed by a set path if, due to the characteristics of the rubber seal, it fails to close completely.
		Caution: In order to avoid seal damage, the value should be increased by max. 10 increments.
		Setting: 1 is equivalent to 1/100mm 10 is equivalent to 0.1 mm 20 is equivalent to 0.2 mm etc. See appendix: <u>Valves and</u> <u>valve seals</u>
	Strategy = Automatic (from SW V	63)
Closing force for	Standard valves Valves with high spring tension	This parameter determines the closing force for the 0 % position
Strateg	y = With defined valve stroke (fron	n SW V63)
Closing force for	Standard valves Valves with high spring tension	See above.
Valve stroke	2 mm, 3 mm , 4 mm, 5 mm, 6 mm	The traverse from the 0% to the 100 % position are set manually.
Valve protection	active	This function prevents the valve from stopping if it is not actuated for a prolonged period. The valve protection program (if active) is always run if after 24 hrs the control variable has not changed. In this case, the valve is completely opened and then closed. This procedure is not indicated on the LEDs.

Continuation:

Designation	Values	Application
Type of valve seal	Valve with Standard seal	This parameter should be
••	Valve with hard seal	changed only if the valve does
	Valve with soft seal	not open with low actuating
	Valve with medium-soft seal	values.
		(see <u>Troubleshooting</u>)
Characteristic curve of valve	Typical characteristic curve	For all standard valve types
	Own characteristic curve	For special valves with
		known characteristic curves
		or for special applications
	Linear characteristic curve	For high-quality valves that
		have flows proportional to the
		path of the valve tappet.
Designation	Values	Meaning
Valve protection*	Active	This function prevents the
	Inactive	valve from stopping if it is not actuated for a prolonged
		period.
		The valve protection program
		(if active) is always run if
		after 24 hrs the actuating
		value has not changed.
		In this case, the valve is
		completely opened and then
		closed.
		This procedure is not
		indicated on the LEDs.
drive to new valve position	Position always accurate	The valve is re-positioned
		each time the actuating value
		is changed.
	At change of actuating value >1	The valve is never re-
	%	positioned until the actuating
	At change of actuating value >2	value has changed from the
	%	last position by more than the
	At change of actuating value >3 %	set value. Enables frequent,
	At change of actuating value >5	small positioning increments to be suppressed
	%	Important:
	At change of actuating value >7	Too high a value can affect
	%	the temperature control.
		the temperature control.
	At change of actuating value >10 %	
	At change of actuating value >15 %	
	70	
Continuation:		
--------------------------------	---------------------------------	--------------------------------
Designation	Values	Application
Function of Object 6	Increase or decrease set point	Change set point value in
	value	increments via Object 6
		Object 6 Determining the
	Determines maximum actuating	maximum actuating actuating
	value	value
		Object 6 sends the current
		valve position during the
	Sends the actual valve position	tappet movement.
		This setting is most suitable
		for diagnostic operations
Designation	Values	Meaning
Transmission of <u>maximum</u>	when internal actuating value	Object 6 will only send if all
actuating value	is higher than the received	other actuators have a smaller
		actuating value
	Every 2 min	Object 6 sends its actuating
	Every 3 min	value cyclically and starts a
	Every 5 min	new calibration
	Every 10 min	
	Every 15 min	
	Every 20 min	
	Every 30 min	
	Every 45 min	
	Every 60 min	
Transmission of actual	Does not send	Sends the new valve position
valve position	At change of 1%	as soon as it has changed
	At change of 2 %	since the last sending by the
	At change of 3 %	configured amount.
	At change of 5 %	At the end of positioning, the
	At change of 7 %	achieved value is sent
	At change of 10 %	regardless of the configured
	At change of 15 %	interval.

3.4.10 External interface

See also <u>"External interface"</u> Appendix

Table 20

Designation	Values	Meaning
Type of connected window		Enables both NC and NO
contact		contacts to be used
		If several contacts are present,
	Window open = contact closed,	these must be switched in
		parallel
	Window open = contact open	If several contacts are present,
		these must be switched in
		series
Transmission of window	No transmission	Is the status of the connected
state	Only in case of change	window contact to be sent to
		the bus?
		~
		Same cycle time as for
	at change and cyclically with	sending current operating
	actual operating mode	mode
Type of connected	Present = contact closed,	Enables both NC and NO
presence contact	Present = contact open	contacts to be used
Transmission of presence	No transmission	Is the status of the connected
status	Only in case of change	presence contact to be sent to
		the bus?
		Same cycle time as for
	at change and cyclically with	sending current operating
	actual operating mode	mode

3.4.11 Linear characteristic valve curve

This setting should be used only for valves described exclusively as linear. **Note:** The values can be shown but not changed in this table.

Table 21

Designation	Values	Meaning
Valve position in % for 10%	10	At 10% valve stroke, a
volume flow (199)		volumetric flow of 10% is
Valve position in % for 20 %	20	reached, at 20%, a volumetric
volume flow (199)		flow of 20% is reached etc.
Valve position in % for 30 %	30	
volume flow (199)		
Valve position in % for 40 %	40	
volume flow (199)		
Valve position in % for 50 %	50	
volume flow (199)		
Valve position in % for 60 %	60	
volume flow (199)		
Valve position in % for 70 %	70	
volume flow (199)		
Valve position in % for 80 %	80	
volume flow (199)		
Valve position in % for 90 %	90	
volume flow (199)		

3.4.12 Own characteristic valve curve

Prof. setting for special valves.

This parameter appears only when an internal characteristic valve curve has been selected from the "Unit settings" page.

The actuator response can be accurately adjusted using the characteristic valve curve (manufacturer's documentation).

This parameter enables the Cheops control to be adjusted on a valve at 9 points of the characteristic curve (10%.....90%). A certain flow is reached for each point at a certain % of the valve stroke.

Table	22
-------	----

Designation	Values	Meaning
Valve position in % for 10% volume flow (199)	199 (10)	At what % valve stroke is a volumetric flow of 10% reached?
Valve position in % for 20 % volume flow (199)	199 (20)	At what % valve stroke is a volumetric flow of 20% reached?
Valve position in % for 30 % volume flow (199)	199 (30)	At what % valve stroke is a volumetric flow of 30% reached?
Valve position in % for 40 % volume flow (199)	199 (40)	At what % valve stroke is a volumetric flow of 40% reached?
Valve position in % for 50 % volume flow (199)	199 (50)	At what % valve stroke is a volumetric flow of 50% reached?
Valve position in % for 60 % volume flow (199)	199 (60)	At what % valve stroke is a volumetric flow of 60% reached?
Valve position in % for 70 % volume flow (199)	199 (70)	At what % valve stroke is a volumetric flow of 70% reached?
Valve position in % for 80 % volume flow (199)	199 (80)	At what % valve stroke is a volumetric flow of 80% reached?
Valve position in % for 90 % volume flow (199)	199 (90)	At what % valve stroke is a volumetric flow of 90% reached?

The values in brackets indicate a linear valve.

Diagram 1 shows a characteristic valve curve, as occurs frequently in practice. In this characteristic curve, a 30% flow occurs at a valve stroke as low as 10%. At a valve stroke of 50%, the flow is over 80%.

Diagram 1

A linear characteristic curve as shown in Diagram 2 would be ideal for the control. A non-linear characteristic curve can be linearised by inputting an own characteristic curve. To do this, the valve position (stroke) at 10, 20.....90% is taken from Diagram 1 and "internal characteristic curve" entered into the parameter page.

Diagram 2

4 Start-up

IMPORTANT INFORMATION.

- During maintenance work on the radiator, the actuator is always dismounted and the valve securely closed by an alternative method (original protective cap etc...). The valve could be unexpectedly opened, potentially causing water damage, through either the control or the valve protector.
- Cheops must already be mounted on the valve when the application is downloaded, otherwise no adaptation can take place.

4.1 Installation

First, the unit is mounted onto the valve using the correct adapter ring. The bus voltage can then be applied.

This automatically starts the adaption process.

When does the adjustment process occur?

Automatic adjustment occurs for the first time after the bus voltage is applied in the <u>Site</u> <u>function</u>, and afterwards each time the application is downloaded.

A new calibration run is performed at regular intervals after reset and during the course of the heating phase.

In order to correct the changes of the <u>Valve characteristics</u> over the course of time (aging of the rubber seal), the valve is automatically remeasured on a regular basis. **NOTE:**

- If an adjusted device is mounted on a different valve, the adjustment process must be repeated by downloading the application.
- The previously stored positions are deleted after a download. The calibration run is performed twice on account of the plausibility test.

4.2 Calibration strategies

2 additional calibration strategies from software V63.

The aim is to enable adjustment to maximum number of different valves.

The selection of the calibration strategy is made via input in the "Strategy for identifying valve " parameter (Device settings).

4.2.1 Strategy 1, standard

The valve is measured during a calibration run (e.g. after reset) and the "valve open" and "valve closed" positions are stored. The calibration run is performed twice after download and the resulting values compared for plausibility. The calibration run is performed until two successive matching value pairs have been measured. These values are then stored and the positions used for future runs. The measured values are compared with the stored values during the calibration run so that the process is only performed once for plausibility.

4.2.2 Strategy 2, Automatic (only for devices from software version 63/ 61 drive)

With this option, only the "Open" valve position is calculated during the calibration run. In order to close the valve, the actuator pushes out the tappet until the set force is exerted on the valve. The following closing forces are available:

Closing force for	Closing force
Standard valves	approx. 100 N
Valves with high spring tension	approx. 120 N

It is always recommended to use the "normal valve" setting first as this is completely sufficient for most valves.

The "Valve with high spring tension" setting should only be tried if you cannot close the valve. This enables the current consumption to be increased to 15 mA during the pressing of the rubber seal.

4.2.3 Strategy 3, with defined valve stroke. (Only for devices from software version 63)

With this option, only the Open position of the valve is calculated by working back from a set path from the closing position. In order to close the valve, the actuator pushes out the tappet until the set force is exerted on the valve (closing force for standard valves/valves with high spring tension).

This calibration strategy is primarily to be used if the actuator tappet touches the valve tappet, even if it is completely withdrawn, and measurements cannot be performed.

With a completely unknown valve, the **3 mm** with closing force for standard valves value is a usable starting value.

It is always recommended to use the closing force for standard valves first.

This setting is completely suitable for most valves.

The Valve with high spring tension setting should only be tried if you cannot close the valve. This enables the current consumption to be increased to 15 mA during the pressing of the rubber seal.

The sequence light comes on if this calibration method fails three times.

4.2.4 LED display during calibration run

LEDs	Version up to 2008	Version from 2008
4 3 2 1 0	Flashes as long as the spindle is in its maximum inner position	
4 3 2 1 0	Flashes until the 100 % position has been found	Flashes while valve is scanned
4 3 2 1 0	Flashes until the 0 % position has been found	Flashes during position calculation (can be very brief)

"Settings" parameter page:

Applied control functions = Heating and cooling

"Set point values" parameter page:

Base set point value after loading the application = $21 \degree C$

Dead zone between heating and cooling = 2 K

Increase in standby mode (during cooling) = 2 K

"Operation" parameter page

Maximum set point offset = ± -2 K (equivalent to 1.0 K keystroke)

The blue key is pressed once, i.e. the set point value is decreased by 1 K.

4.3 Site function

While the unit remains in the delivered condition, i.e. no further applications have been downloaded, Cheops control functions in field mode. This function enables Cheops control to **be used immediately on site with basic functions.**

The set point temperature can be selected directly on the device using the red (+) and blue (-) keys.

There are 5 set point temperature values available. The selected temperature is indicated on the LEDs as follows.

This enables Cheops control to automatically control the room temperature during the period between assembly and start-up by an EIB specialist.

The ETS database can be found on our download page: <u>http://www.theben.de/downloads.htm</u>.

5 Appendix

5.1 Determining the current set point value

The current set point value can be adapted in line with certain requirements by selecting the operating mode.

The operating mode can be specified by Objects 3...5. There are two methods available:

5.1.1 New operating modes

If on the parameter page "operating mode", new operating mode is selected by the "Objects to select operating mode" parameter, the current operating mode can be defined as follows:

Table 23

Pre-selected operating		Window status	Current operating
mode Object 3	Object 4	Object 5	mode Object 10
Any	Any	1	Frost/heat protection
Any	1	0	Comfort
Comfort	0	0	Comfort
Standby	0	0	Standby
Night	0	0	Night
Frost/heat protection	0	0	Frost/heat protection

Typical application: In the mornings Object 3 activates "Standby" or "Comfort" mode and in the evenings "Night" mode via a timer (e.g. TR 648).

During holiday periods, Object 3 also selects frost / heat protection via another channel of the timer.

Object 4 is connected to a presence indicator. If a presence is detected, Cheops control switches to Comfort mode (see Table).

Object 5 is connected to a window contact. As soon as a window is opened, Cheops control switches to frost protection mode.

5.1.2 Old operating modes

If on the parameter page, old operating mode is selected by the "Objects to select operating mode" parameter, the current operating mode can be defined as follows:

Table 24

Night Object 3	Comfort Object 4	Frost / heat protection Object 5	Current operating mode Object 10
Any	Any	1	Frost/heat protection
Any	1	0	Comfort
Standby	0	0	Standby
Night	0	0	Night

Typical application: In the mornings "Standby" mode and in the evenings "Night" mode is activated via a timer.

During holiday periods, Object 5 selects frost / heat protection via another channel on the timer.

Object 4 is connected to a presence indicator. If a presence is detected, Cheops control switches to Comfort mode (see Table).

Object 5 is connected to a window contact. As soon as a window is opened, Cheops control switches to frost protection mode.

The old method has two advantages over the new method:

1. To switch from Comfort to Night operating mode, 2 telegrams (2 timer channels if necessary) are required.

Object 4 must be set to 0 and object 3 to 1.

2. If during periods when "Frost / heat protection" is selected via the timer, the window is opened and then closed again, the "Frost / heat protection" mode is cleared.

5.1.3 Set point value calculations

Assuming the current operating mode, the current set point value of Cheops control is calculated as follows:

A distinction is drawn between whether heating or cooling operation is currently required.

5.1.3.1 In heating operation

Operating mode	Current set point value
Comfort	Basic set point value + set point value offset
Standby	Basic set point value + set point value offset - reduction in standby mode
Night	Basic set point value + set point value offset - reduction in night mode
Frost/heat	Programmed set point value for frost protection mode
protection	

Table 25: Current set point value on heating

Example:

Heating in comfort mode.

"Set point values" parameter page	
Basic set point value after download of application	21 °C
Reduction in standby operating mode at heating	2 K 💌
"Operation" parameter page	
Maximum shift of set point value	+/- 2 K (1 push button stroke corresponds to 1.

The set point value has previously been increased by one step using the red key (1 keystroke)

Calculation:

Current set point value = basic set point value + set point value offset $= 21^{\circ}C + 1K$ $= 22^{\circ}C$

If operation is switched to standby mode, the current set point value is calculated as follows:

Current set point value = basic set point value + set point value offset - reduction in standby mode

$$= 21^{\circ}C + 1K - 2K$$
$$= 20^{\circ}C$$

5.1.3.2 In cooling operation

Table 26: Current set point value on cooling

Operating	Current set point value
mode	
Comfort	Basic set point value + set point value offset + dead zone
Standby	Basic set point value + set point value offset + dead zone + increase in standby
Standby	mode
Night	Basic set point value + set point value offset + dead zone + increase in night
	mode
Frost/heat	Programmed set point value for heat protection mode
protection	

Example:

Cooling in comfort mode.

The room temperature is too high and Cheops control has switched to cooling operation

Calculation:

Current set point value	= basic set point value + set point value offset + dead zone
	$= 21^{\circ}C -1K + 2K$
	$= 22^{\circ}C$

Changing to standby mode causes a further increase in the set point value (energy saving) and gives rise to the following set point value.

Set point value = basic set point value + set point value offset + dead zone + increase in

standby mode = $21^{\circ}C - 1K + 2K + 2K$ = $24^{\circ}C$

5.2 Set point value offset

The current set point value on Cheops control can be adapted in 3 ways:

- step by step by the red (+) and the blue (-) key
- in increments via Object 5 " adjustment of set point temperature "
- directly via Object 1 " Manual shift of set point value "

The differential between the set point value offset and the <u>Basic set point value</u> is sent by Object 1 at each change (e.g. -1.00).

The offset limits are specified on the "Operation" parameter page by the "Maximum set point value offset" parameter and apply for all 3 types of set point value offset.

This parameter indicates the maximum permitted offset and the increment per keystroke (or per activation of Object 6).

Maximale Sollwertverschiebung

+/- 2 K (entspricht 1,0 K pro Tastendruck)

5.2.1 Incremental set point temperature adjustment via keys

Each time the blue key is pressed, the set point value is decreased by one increment. Each time the red key is pressed, the set point value is decreased by one increment.

When the max. permitted offset is reached, further keystrokes have no effect.

5.2.2 Incremental set point temperature adjustment via Object 6

Each time a 1 is sent to Object 6, the set point value is decreased by one increment. Each time a 0 is sent to Object 6, the set point value is increased by one increment.

When the max. permitted offset is reached, further send actions have no effect.

5.2.3 Direct set point temperature adjustment via Object 1

In this case, the set point value is changed by sending the desired offset to Object 1. This involves the differential (may be preceded by a minus sign) being sent in EIS5 format.

The offset always relates to the programmed and not to the current set point value.

Example – Basic set point value 21°C:

If a value of 2.00 is sent to Object 1, the new set point value is calculated as follows: $21^{\circ}C + 2,00K = 23.00^{\circ}C$.

To then bring the set point value to 22° C, the differential is resent to the programmed basic set point value (here 21° C), in this case 1.00K (21° C+1.00K= 22° C)

5.3 External interface

The external interface consists of inputs E1 and E2. Both inputs are routed through the Cheops connection line.

The use of these inputs (presence sensor or actual value) is specified on the "<u>Settings</u>" parameter page.

The inputs themselves are configured on the "External interface" parameter page.

5.3.1 Connections

Table 27

Name	Colour	Function	
BUS	Black (-)	EID bus line	
DUS	Red (+)	EIB bus line	
F 1	Yellow	Binary input for window contacts(e)	
E1	Green		
E2	White	Binary input for presence indicator, presence key or analogue inp	
Brown for external temperature sensor		for external temperature sensor	

5.3.2 Input E1

E1 is used exclusively for window contacts (if present). The window contacts can be connected to E1 directly and without additional supply voltage.

On the "External interface" parameter page, the <u>Type of connected window contact</u> (Opener/closer) can be set.

When the "Open" window position is detected, Cheops control switches to frost operating mode.

5.3.3 Input E2

• E2 as binary input:

A presence indicator, switch or key can be directly connected here

If a **presence indicator** (or switch) is used, the period of comfort mode is determined by the indicator, i.e. comfort mode remains in force for as long as presence is indicated.

If a **presence key** is used, operation switches without time limit from standby to comfort mode when presence is indicated.

If presence is indicated during night operation, comfort mode is activated for a limited time. Because the presence key is often not reset when the room is vacated, the presence input is automatically reset when the defined operating mode is changed, so that a night reduction, for example, can take place.

The selection between key and indicator is made on the "Operating mode" parameter page. The type of presence contact can be set on the "External interface" parameter page.

• E2 as analogue input for an external sensor

With this configuration, all settings are made on the "Actual value" parameter side.

An external sensor (Order No. 907 0 191) is connected to E2. The maximum permitted line length is 10m.

Important:

If E2 is declared as actual value input, the "Input for actual value" selection cannot be changed on the "Actual value" parameter page.

5.4 Monitoring the actual value

5.4.1 Application

Case 1: A sensor is connected to interface E2.

Its connection line could be inadvertently interrupted or short-circuited, e.g. during building or renovation work.

Case 2: The temperature is determined by a different EIB device and sent to Cheops control. This external temperature transmitter could fail (bus line short circuited etc...) and not longer be able to perform its function, for a short time or permanently.

Because control is not possible if the actual value fails, this value must be monitored.

5.4.2 Principle

If an external sensor is connected to E2, it is constantly monitored for short-circuit or line break.

If the temperature is received via Object 2, Cheops control can monitor whether new actual value telegrams are received at regular intervals.

In both cases, either an emergency program can be started or further control can be handled by the internal sensor, should the actual value fail.

5.4.3 Practice

The response is defined as follows on the "Actual value" parameter page:

• External sensor on E2

Emergency program (0...100%)

50%	•
	50%

or internal measurement:

		_
Position in case of failure of external sensor	Continue control with internal sensor	

• Receive actual value via <u>Object 2</u>

First the monitoring period must be defined.

This should be at least double the cycle time of the temperature transmitter (e.g. if the temperature is sent to Cheops control every 5 minutes, the monitoring period must be at least 10 minutes).

Monitoring of object actual value	10 min	•

The response to the actual value failure can then be programmed as above.

Emergency program (0...100%)

Position in case of failure of actual value or sensor	50%	▼

or internal measurement:

Position in case of failure of actual value or sensor	Continue control with internal sensor	•

Important recommendation:

Rooms can cool down dramatically when the outdoor temperature is low. This may cause radiators to freeze. To prevent this from happening, you must not select a too low position in the emergency program.

A value of \geq 30% is recommended.

5.5 Valves and valve seals

5.5.1 Valve structure

5.5.2 Valves and valve seals

When idle, i.e. tappet not actuated, the tappet is pushed outwards by the spring and the valve opens (100% with normal effect).

When the tappet is pushed, the rubber seal is pressed into the valve seat and the valve closes (0% position with normal effect).

The valve does not close immediately on touching the valve seat, depending on the characteristics, the existing tappet may have to move onwards until the valve is fully closed. This response depends on the hardness, shape, aging or damage to the valve seal.

To correct the influence of this parameter, Cheops allows an additional pressing of the valve seal to be entered (see also <u>Troubleshooting</u>).

Caution: In order to avoid seal damage, the value should be increased by max. 10 increments.

5.6 Limit of actuating value

To control the temperature, Cheops control sets an actuating value of between 0% and 100%. For practical reasons, it is not usually necessary to use the entire bandwidth of between 0% and 100%).

5.6.1 Minimum actuating value

The unpleasant whistling noise that some valves can generate at low actuating value, can be avoided by specifying a minimum actuating value.

If, for instance, this response is determined at below 8%, a minimum actuating value of 10% is specified.

On receipt of a actuating value below the specified limit value, Cheops control can respond in one of 2 ways ("Response on under-running the minimum actuating value in heating operation"):

- Either move to immediately to 0% ("0%")
- or stop at the position of the minimum actuating value and do not close valve completely until actuating value 0% is received (0%=0% otherwise minimum actuating value)

5.7 Determine the maximum actuating value

5.7.1 Application

If within a system all valve actuators are only slightly open, e.g. one at 5%, one at 12%, another at 7% etc., the heating boiler can reduce its output because only a small amount of heating energy is required.

In order to guarantee this, the heating boiler requires the following information: How high is the actuating value in the room, which currently exhibits the greatest heat requirement?

With Cheops valve actuators, this task is handled by the "Maximum position" function.

5.7.2 Principle

The actuating values are constantly compared between all participants (Cheops valve actuators). Those participant with a higher actuating value than the one received may send it, those with a smaller one may not.

In order to accelerate the process, the greater the difference between its own and the received actuating value, the greater the speed at which the valve actuator sends.

Thus, the valve actuator with the highest actuating value sends first and beats the remainders.

5.7.3 Practice

The actuating value comparison takes place via Object 3 ("Maximum position") where for each valve actuator, a common group address for the maximum position is placed on Object 3.

In order to start the actuating value comparison between the participants, one (and only one) participant must send a value to this group address cyclically.

This task can be handled by either boiler or valve actuator.

If it is the boiler, it must send the smallest possible value, i.e. 0%.

If it is a Cheops valve actuator, the parameter " Transmission of object

"Max. actuating value" (for boiler control)" on parameter page " Security and forced mode" must be set to any cycle time.

This value actuator then regularly sends its own actuating value and the others can respond accordingly.

Irrespective of which participants act as initiator, the "Transm. of object "max. actuating value" (for heating system)" must be set to the default value for all other valve actuators, see Figure:

Transm. of object "max. actuating value" for heating system

Only if own actuating value is higher

-

5.8 2-step heating

A 2-step heating system consists of a slow main step and a fast additional step.

Typically, Cheops control is plugged into the floor heating system (main step) and the radiators are controlled as the additional step.

Cheops controls the two steps in parallel, the additional step being controlled at a lower set point value.

The differential between main and additional step is defined on the "Set point value" parameter page.

Cheops drive valve actuators can be used as a <u>continuous</u> additional step (recommended).

Thermal valve actuators (Order No. 907 0 248) or possibly an electrical additional heater can be used as a <u>switching</u> additional step.

5.9 Temperature control

5.9.1 Introduction

Cheops Control can be used as a P or a PI controller, although the PI control is always preferred.

With the proportional control (P control), the actuating value is rigidly adjusted to the temperature differential.

The proportional integral control (PI control) is far more flexible, i.e. controls more quickly and more accurately.

To explain the function of both temperature controls, the following example compares the room to be heated with a vessel.

The filling level of the vessel denotes the room temperature. The water supply denotes the radiator output. The heat loss from the room is illustrated by a drain.

In our example, the maximum supply volume is 4 litres per minute and also denotes the maximum radiator output.

This maximum output is achieved with an actuating value of 100%.

Accordingly, at an actuating value of 50%, only half the water volume, i.e. 2 litres per minute would flow into our vessel.

The bandwidth is 41.

This means that the controller will send an actuating value of 100% while the actual value is smaller than or equal to (211 - 41) 171.

Function:

- Desired filling quantity: 21 litres (= set point value)
- From when should the supply flow gradually be reduced in order to avoid an overflow? :
 - 4l below the desired filling volume, i.e. at 211 41 = 171 (=bandwidth)
- Original filling volume 151 (=actual value)
- The losses amount to 11/minute

5.9.2 Response of the P-control

A filling volume of 15l gives rise to a control deviation of 211 - 151 = 61Because our actual value lies outside the bandwidth, the control will control the flow at 100% i.e. at 4l / minute

The supply quantity (actuating value) is calculated from the control deviation (set point value – actual value) and the bandwidth. Actuating value = (control deviation / bandwidth) x 100

Filling level	Actuating value	Supply	Losses	Increase in filling
				level
151	100%	4 l/min		3 l/min
191	50%	2 l/min	1 l/min	1 l/min
201	25%	1 l/min		0 l/min

The table below shows the response and therefore also the limits of the P-control

The last line indicates that the filling level cannot increase any further, because the flow allows only the same amount of water to flow in as can flow out through loss. The result is a permanent control deviation of 11 and the set point value can never be reached. If the loss was 11 higher, the permanent control deviation would increase by the same amount and the filling level would never exceed the 191 mark.

P-control as temperature control

The P-control behaves during heating control as shown in the previous example.

The set point temperature $(21^{\circ}C)$ can never quite be reached.

The permanent control deviation increases as the heat loss increases and as the ambient temperature decreases.

5.9.3 Response of the PI-control

Unlike the pure P-control, the PI-control works dynamically.

With this type of control, the actuating value will not remain unchanged, even at constant deviation.

In the first instant, the PI-control sends the same actuating value as the P-control, although the longer the set point value is not reached, the more this value increases.

This increases is time-controlled over the integration time.

With this calculation method, the actuating value does not change if the set point value and the actual value are the same.

Our example, therefore, shows equivalent in and outflow.

Notes on temperature control:

Effective control depends on agreement of bandwidth and integration time with the room to be heated.

The bandwidth influences the increment of the actuating value change:

Large bandwidth = finer increment on actuating value change.

The integration time influences the response time to temperature changes:

Long integration time = slow response.

Poor agreement can result in either the set point value being exceeded (overshoot) or the control taking too long to reach the set point value.

Usually, the best results are achieved with the standard settings or the settings via system type.

Standard settings:

Settings	Set point values	actual value		
Control			Standard	
Control by	system type			
Settings	Set point values	actual value	Heating control	
Setting of	control parameter		Aria tupo of sust	

Via type of system

6 Troubleshooting

Caution: Error codes are only available in the version up to 2008.

Table 28

Response	Error code	Potential cause	Remedy
	82	No valve	Plug unit onto valve and reload application
All LEDs flash as continuous light	84	Valve tappet is already touched, although the spindle of the valve actuator is fully returned.	Use other valve adapter. Please contact our Customer Service. When the spindle is returned, the valve tappet must be at least 3/10 mm away from the spindle (see below, <u>Check</u> <u>adapter ring).</u>
from bottom to top, i.e. valve adaption was unsuccessful	81	Valve tappet cannot be moved, even with maximum force (120N).	Check whether tappet sits correctly, if so, replace valve.
	81	Following start-up, valve actuator with valve was mounted onto a different valve and must be readapted.	Re-download the application, valve actuator is then automatically adapted
	81	Valve seal too heavily pressed	Cancel additional pressing of rubber seal
	83	Valve jams	Check valve

Response	Potential cause	Remedy
Valve does not close when	Valve seal is insufficient for	Enter additional pressing of
actuating value is 0%	pressing onto the valve seat	rubber seal.
_		Caution: Increase parameter
		by max. increments of 10.
		OR (from 2008):
		Choose another <u>calibration</u>
		strategy.
	Valve seal is damaged	Replace valve.
Valve opens only with an	Existing valve seal is too soft	Adapt parameter type of valve
unexpectedly large actuating		seal.
value		Valve opens only with
		actuating values over:
		$5\% \Rightarrow$ Standard valve seal
		$10\% \Rightarrow$ medium-soft seal
		$20\% \Rightarrow$ select soft seal
Valve does not move to	Minimum or maximum	Check minimum and
positions below or above a	actuating value parameter(s)	maximum actuating value
certain value	have been changed	parameters
No LED display and no	Device was unloaded with	Reload individual address
automatic adaption	ETS software	+ application program
after reset		
Error message with ETS	Device was unloaded with	Reload individual address
device info / Application	ETS software	+ application program
program:		
Run state \rightarrow Halted		

6.1 Display current valve position

The current valve position can be viewed by simultaneously the blue and red buttons.

Position:

6.2 Read-out error code

Important:

The error code was replaced (from 2008) by the calibration strategy code.

Up to 2008:

If the valve causes an error message and the LEDs flash as continuous light, Cheops generates an error code.

This remains in the BCU memory and can (start-up/test) be read-out using the ETS software.

1. Select device in the project and click on Test / Device memory viewer menu item

📇 ETS2 Commissioning/Test - [Building View [Cheops]]							
碧 Project Edit Commissioning	<u>Test</u> <u>Options</u> <u>View</u> <u>W</u> indow	<u>H</u> elp					
Open Device Funct Topo C	<u>P</u> hysical Address Device <u>I</u> nfo Device <u>Memory Viewer</u>	Save Relp Exit					
	<u>G</u> roups						
Cheops Ph	<u>T</u> elegrams	Product	Order number	Program			
	Coupjer		Object name				

2. Enter memory area 1FB, deselect RAM and EEPROM

Define Address Area				
☑	Be <u>q</u> in:	\$1FB		
	<u>E</u> nd:	\$1FB		
EEPR <u>O</u> M				
□ BA <u>M</u>				
🗖 e <u>x</u> ternal Memory				

_	~	<u>R</u> ead	
3.	Click the		button

4. The error code appears in the results window

Physical Address	Define Address Area	
• Bus	I Begin: \$1FB	
Physical <u>A</u> ddress: 1.1.2	End: \$1FB	
C <u>L</u> ocal	□ EEPR <u>O</u> M	
	□ BA <u>M</u>	
Memory:	e <u>x</u> ternal Memory	
- User define memory area	a	
00 01 02 03 04 05	06 07 08 09 0A 0B 0C 0D 0E	0F
0x01F0		
	ERROR CODE	
•		

Table 30

Code	Name
00	No error
81	Overload switch-off
	(overcurrent)
82	Valve not found
83	Valve does not move
84	Stroke too short

6.3 Checking end position

The end positions stored during the adaption process can be read out in exactly the same way as the error numbers using the ETS software.

The internal stop position (spindle inserted, valve open) is stored in Hex-format under the address \$1FC and the external stop position under \$1FD.

After downloading the application, these values are reset (i.e. \$1FC = 00 and \$1FD = FF). The found stop positions are stored here following successful adaption. If both addresses show 00 after adaption, the adaption is deemed to have been unsuccessful.

To determine the stop positions in millimetres, the values are converted into decimal and divided by 20.

Example calculation:

Table 31

Position	Valve	Addres s	Hexadecimal Value	1	Result decimal value/20 =
Internal stop	Open	\$1FC	24	36	1,8 mm
External stop	Close d	\$1FD	61	97	4,85 mm

The stroke is calculated from the two values as follows:

Stroke = external stop - internal stop

In our example: Stroke = 4.85 - 1.8 mm = 3.05 mm

Limit values for successful adaption

The following values must be respected:

Table 32

Internal stop		Extern	al stop	Stroke	
Dimension	Hex value	Dimension	Hex value	Dimension	Hex value
≥ 0,3mm	≥6	≤ 7,5mm	≤ 96	≥ 1.2mm	≥ 18

theben

6.4 Checking adapter ring

The maximum dimension between top edge of adapter ring and end of tappet is 4.7 mm. If this dimension is over-run, an alternative adapter ring must be used.

6.5 Reading the software version number

Cheops displays the current software version via LEDs.

After reset, this is displayed as a binary number in three stages.

- Stage 1: Full display: All LEDs = ON
- Stage 2: LED 0 is ON and the upper 4 Bits are shown (= Hi-Nibble, value: see table)
- Stage 3: LED 0 is ON and the lower 4 Bits are displayed (= Lo-Nibble).
- •

The values of the individual LEDs are displayed as follows

The number is produced from the sum of the values of the illuminated LEDs 1..4. LED 0 is not counted.

	evices from 20	Devices up to 2008		
Example 1	Example 2	Example 3	Example 4	Example 5
Version 044	Version 061	Version 063	Version 110	Version 121
= \$2C	= \$3D	=\$3F	= \$6E	= \$79
(1 circuit	(1 circuit	(1 circuit	(2 circuit	(2 circuit
board)	board)	board)	boards)	boards)
	Stag	ge $1 = All LEDs$	S ON	
4	4	4	4	4
3	3	3	3	3
2	2	2	2	2
1	1	1	1	1
0	0	0	0	0
	St	age 2 = Hi-Nibl	ble	
4	4	4	4	4
3	3	3	3	3
2	2	2	2	2
1	1	1	1	1
0	0	0	0	0
	Sta	age $3 = \text{Lo-Nib}$	ble	
4	4	4	4	4
3	3	3	3	3
2	2	2	2	2
1	1	1	1	1
0	0	0	0	0
00101100	00111101	00111111	01101110	01111001
= \$2C	= \$3D	=\$3F	= \$6E	= \$79

6.5.1 Examples of different versions

7 Glossary

7.1 Basic set point value

The basic set point value is the standard temperature for comfort mode and the reference temperature for reduction in standby and night modes.

The programmed basic set point value (see "<u>Basic set point value after download of</u> <u>application</u>" is stored in Object 0 and can be changed at any time by sending a new value to <u>Object 0</u> (EIS5).

After reset (bus returned), the last used basic set point value is restored.

7.2 Hysteresis

On Cheops control, the hysteresis determines how far the temperature should drop below the set point value before the control switches on the additional step again.

Example with set point value (additional step) 20° C, hysteresis 0.5 K and starting temperature 19° C.

The additional step is switched on and does not switch off again until the set point value (20°) is reached.

The temperature falls and the additional step does not switch on again until 20° C-0.5K= 19.5° is reached.

Without hysteresis, the controller would switch on and off continuously provided the temperature is within the set point value range.

7.3 Continuous and switching control

With a continuous actuating value, the valve is brought to any position between 0% and 100%. This achieves in a pleasant and precise control.

A switching control has only 2 statuses, On or Off, i.e. in our case, valve fully open or fully closed.

7.4 Dead zone

The dead zone is a buffer area between heating and cooling operation. Neither heating nor cooling takes place within this dead zone.

If Cheops control switches to cooling operation, the set point value is increased internally by the amount of the dead zone.

Without this buffer zone, the system would switch continuously between heating and cooling. As soon as the set point value had been under-run, the heating would activate and when the set point value would be achieved, cooling were to be started immediately and the temperature would fall to below the set point value and switch on the heating again.

7.5 Valve stroke

Mechanical path that is between the two end positions, i.e. 0% (valve closed) and 100% (valve fully open) covered (see <u>Valve arrangement diagram</u>).