KNX manual

Switch/dimming actuator SM 4 KNX

4940310

Contents

1 Features 3
2 Operation 4
2.1 Control channels: C1-C4 Control 『C 4
2.2 Switching channels: C1-C4 Relay 5
2.3 Colour control 5
3 Technical data 6
3.1 General 6
3.2 Control outputs C1-C4 7
3.3 Switching channels C1-C4 7
4 General information about KNX Secure 8
4.1 Start-up with "KNX Data Secure" 8
4.2 Start-up without "KNX Data Secure" 9
5 The SM 4 application programme 10
5.1 Selection in the product database 10
5.2 Overview of communication objects 11
5.3 Description of communication objects 13
5.4 Parameter pages overview 21
5.5 General parameters 22
5.6 Parameter for the control channel © 24
5.7 Parameters for the switching channels 42
6 Application examples 58
$6.1 \quad 1-10 \mathrm{~V}$ lighting control 58
6.2 Colour temperature control 0-10 V 61
6.3 Colour control RGBW (0-10 V) 65
7 Appendix 68
7.1 Priorities 68
7.2 Using the soft switch function 69
7.3 Using the force function 75
$7.4 \quad$ 4-bit telegrams (brighter/darker) 76
7.5 Scenes 78
7.6 Conversion of percentages to hexadecimal and decimal values 82

1 Features

- 4-way switch/dimming actuator
- Secure start-up and communication by supporting KNX Data Secure
- 4 relay outputs (bistable), coupled to a control channel or as an individual switch actuator channel.
- Depending on the application, the relay outputs of the switch/dimming actuator are coupled with a control channel or can be used as an individual switch actuator channel.
- When used as a separate switch actuator channel, further functions such as triggering the switching when the threshold is exceeded (DPT5.x, DPT7.x, DPT9.x), logical operations (AND, OR, XOR), flashing, delay or staircase light function are available.
- 4 control channels for controlling electrical consumers which have a 1-10 V interface (passive/sink) or 0-10 V interface (active/source).
These are typically ballasts for lighting technology (EBs or LED control units), or valve or ventilation controls.
- 4 possible applications easily selectable for the control channels (individual control, colour temperature, RGB or RGBW)
- Soft dimming function for staircase light or passage areas
- Dimming value limitation controllable via object for e.g. night light function
- Scene control with 8 individual scenes per channel (scenes 1...64)
- LED switching status indicator for each channel
- Manual operation on device

2 Operation

The device has 2 types of channels:

- 4 control channels, marked with (©)
- 4 switching channels, marked with

For maximum flexibility, each of these can work separately or in combination with each other if required.

2.1 Control channels: C1-C4 Control ©o

The control channels are analogue voltage outputs with max. $0 . .10 \mathrm{~V} D C$.
They are operated in the same way as a dimmer.

Channel buttons

Each control channel has the two buttons " + " and "-". These buttons can be used to operate the outputs (e.g. C1 + -) manually. When pressing repeatedly, the increments of $0 \%-25 \%-50 \%$ - 75\% - 100\% are selectable.

The set minimum dimming value is observed with the increments.
Manual operation of the channels via the channel buttons can be blocked or enabled via a general parameter. The enable applies to the entire device. Individual channels cannot be set.

Manual button

The device can be set to Manual mode via button or object. Bus telegrams are not processed in Manual mode. The objects received during Manual mode will not be caught up.

The function of the Manual button can be blocked or enabled via a general parameter.
An activated Manual applies to the duration of the time, which can be set via the parameter. After that, Manual will be automatically deactivated.

After a bus failure, Manual mode will be reset.

LED display

Manual mode

Manual mode is displayed via an LED.
When active, the LED lights up.
If Manual mode is blocked by parameters, the LED flashes when the button is pressed.

Channel

Each channel has two LEDs. The upper one shows the current state of the channel. The LED is on when the dimming value is $>0 \%$.
If the operation of the buttons is blocked by parameters, the LED associated with the button flashes while the button is pressed.

2.2 Switching channels: C1-C4 Relay

\qquad
(i)

The switching channels can be used in 2 different ways: Either as a switch actuator or as a switch contact for the control channel.

The function of the switching channels is defined on the General parameter page:

- Use as independent switch actuator channel, (e.g. C1 Relay)
- Use as a switch contact for the respective control channel (switching the controlled device on/off). In this case, the relay has no parameters of its own, the channel, e.g. C1 Relay, is hidden.

2.3 Colour control

For colour control, up to 4 control channels are coupled with each other. Configuration is made in control channel C1.

For this, see parameter Type of control on the General parameter page.

2.3.1 Assignment of output terminals for colour control

Depending on the type of colour control (type of control), up to 4 analogue outputs are required.

Type of control	C1 + -	C2 +-	C3 +-	C4 + -
Colour temperature	Warm white	Cold white	free 1	free 2
Colour RGB	Red	Green	Blue	free 3
Colour RGBW	Red	Green	Blue	White

[^0]
3 Technical data

3.1 General

Bus voltage	$\mathrm{KNX}: 21-32 \mathrm{~V} \mathrm{DC}$
Bus current KNX	$<10 \mathrm{~mA}$
Operating voltage	$110-240 \mathrm{~V} \mathrm{AC}+,10 \% /-15 \%$
Frequency	$50-60 \mathrm{~Hz}$
Standby output	$<0.5 \mathrm{~W}$
L x W x D	$90 \times 72 \times 70 \mathrm{~mm}$
Type of installation	Series mounting, DIN-rail
Connection type	Solid: $0.5 \mathrm{~mm}^{2}$ $(\emptyset 0.8)$ to $6 \mathrm{~mm}^{2} \mid$ stranded wire with crimp terminal: $0.5 \mathrm{~mm}{ }^{2}$ to $4 \mathrm{~mm}^{2}$
Max. cable cross-section	IP 20 in accordance with EN 60529
Protection rating	II subject to designated Installation
Protection class	2
Pollution degree	4 kV
Rated impulse voltage:	

theben

3.2 Control outputs C1-C4 ©

Number	4
Output voltage	$0-10 \mathrm{~V} \mathrm{DC}$
Type of output	Active (source) or passive (sink)
Min. load (active/source)	1250Ω
Max. current (passive/sink)	100 mA
Short circuit/overload protection	Yes

3.3 Switching channels C1-C4

Number of relay outputs	4
Type of contact	μ contact; NO contact; the switching of any phase is permitted
Contact gap	$<3 \mathrm{~mm}$
Switching capacity	10 A (at $240 \mathrm{~V} \mathrm{AC}, \cos \varphi=1$), 3 A (at $240 \mathrm{~V} \mathrm{AC} \cos \varphi=0.6$)
Minimum load	100 mA
Switching SELV	Possible if all channels of a module switch SELV
Incandescent/halogen lamp load	1200 W
Fluorescent lamp load (EB)	1100 W
LED lamps	$<2 \mathrm{~W}: 55 \mathrm{~W}$
$2 \mathrm{~W}: 600 \mathrm{~W}$	
Inrush current	Max. $800 \mathrm{~A} / 200 \mu \mathrm{~s}$
C-load	$133 \mu \mathrm{~F}$

4 General information about KNX Secure

ETS5 Version 5.5 and higher support secure communication in KNX systems. A distinction is made between secure communication via the IP medium using KNX IP Secure and secure communication via the TP and RF media using KNX Data Secure. The following information refers to KNX Data Secure.

In the ETS catalogue, KNX products supporting "KNX Secure" are clearly marked

As soon as a "KNX-Secure" device is included in the project, the ETS requests a project password. If no password is entered, the device is included with Secure Mode deactivated. However, the password can also be entered or changed later in the project overview.

4.1 Start-up with "KNX Data Secure"

For secure communication, the FDSK (Factory Device Setup Key) is required. If a KNX product supporting "KNX Data Secure" is included in a line, the ETS requires the input of the FDSK. This device-specific key is printed on the device label and can either be entered by keyboard or read by using a code scanner or notebook camera.

Example of FDSK on device label:
theben
Device Certificate (FDSK)
AABL57-P7KAAA-
CAQDAQ-CQMBYI-BEFAWD-ANBYHT

4941670

0048 FF000000

After entering the FDSK, the ETS generates a device-specific tool key. The ETS sends the tool key to the device to be configured via the bus. The transmission is encrypted and authenticated with the original and previously entered FDSK key. Neither the tool key nor the FDSK key are sent in plain text via the bus.
After the previous action, the device only accepts the tool key for further communication with the ETS.
The FDSK key is no longer used for further communication, unless the device is reset to the factory setting: In this case, all set safety-related data will be deleted.
The ETS generates as many runtime keys as needed for the group communication you want to protect. The ETS sends the runtime keys to the device to be configured via the bus.
Transmission takes place by encrypting and authenticating them via the tool key. The runtime keys are never sent in plain text via the bus.

The FDSK is saved in the project and can be viewed in the project overview. All keys for this project can also be exported (backup).

During project planning, it can be defined subsequently which functions/objects are to communicate securely. All objects with encrypted communication are identified by the "Secure" icon in the ETS.

4.2 Start-up without "KNX Data Secure"

Alternatively, the device can also be put into operation without KNX Data Secure. In this case, the device is unsecured and behaves like any other KNX device without KNX Data Secure function.
To start up the device without KNX Data Secure, select the device in the 'Topology' or 'Devices' section and set the 'Secure start up' option in the 'Properties' area of the 'Settings' tab to 'Disabled'.

5 The SM 4 application programme

5.1 Selection in the product database

Manufacturer	Theben AG
Product family	Dimmers
Product type	SM 4
Programme name	SM 4

Number of communication objects	44
Number of group addresses	254
Number of associations	255

(1) The ETS database can be found on our website: www.theben.de/downloads

5.2 Overview of communication objects

5.2.1 Channel C1 Control

No.	Object name	Function	Length	R	W	C	T	DPT
1	Channel C1 Control	Switching ON/OFF	1 bit	-	W	C	-	1.001
2	Channel C1 Control	Brighter/darker	4 bit	-	W	C	-	3.007
3	Channel C1 Control	Dimming value	1 byte	-	W	C	-	5.001
4	Channel C1 Control	Soft switching	1 bit	-	W	C	-	1.001
5	Channel C1 Control	Block	1 bit	-	W	C	-	1.001
6	Channel C1 Control	Call up/save scenes	1 byte	-	W	C	-	18.001
7	Ch	Block scenes = 1	1 bit	-	W	C	-	1.001
		Enable scenes = 1	1 bit	-	W	C	-	1.001
		Force $=1$	1 bit	-	W	C	-	1.001
		Force $=0$	1 bit	-	W	C	-	1.001
8	Channel CI Control	Dimming value with force	1 byte	-	W	C	-	5.001
		Force	2 bit	-	W	C	-	2.001
9	Channel C1 Control	Dimming value limitation	1 byte	-	W	C	-	5.001
10	Channel C1 Control	Feedback On/Off	1 bit	R	-	C	T	1.001
11	Channel C1 Control	Feedback in \%	1 byte	R	-	C	T	5.001
12	Channel C1 Control	Time to next service	4 bytes	R	-	C	T	13.100
12	Channel CI Control	Operating hours feedback	4 bytes	R	-	C	T	13.100
13	Channel C1 Control	Service required	1 bit	R	-	C	T	1.001
14	Channel C1 Control	Reset service	1 bit	-	W	C	-	1.001
	Channel C1 Control	Reset operating hours	1 bit	-	W	C	-	1.001
15	Channel C1 Control	Switching ON/OFF (RGB red)	1 bit	-	W	C	-	1.001
16	Channel C1 Control	Switching ON/OFF (RGB green)	1 bit	-	W	C	-	1.001
17	Channel C1 Control	Switching ON/OFF (RGB blue)	1 bit	-	W	C	-	1.001
18	Channel C1 Control	Switching ON/OFF white	1 bit	-	W	C	-	1.001
		Colour temperature	2 bytes	-	W	C	-	7.600
19	Channel C1 Control	Colour control RGB	3 bytes	-	W	C	-	232.600
		Colour control RGBW	6 bytes	-	W	C	-	251.600
		Colour control RGB (red)	1 byte	-	W	C	-	5.001
20	Channel C1 Control	Relative colour temperature	1 byte	-	W	C	-	5.001
		Colour control (colour hue)	1 byte	-	W	C	-	5.003
21	Channel	Colour control (saturation)	1 byte	-	W	C	-	5.001
21	Channel	Colour control RGB (green)	1 byte	-	W	C	-	5.001
22	Channel C1 Control	Colour control RGB (blue)	1 byte	-	W	C	-	5.001
23	Channel C1 Control	Colour control white	1 byte	-	W	C	-	5.001
24	Channel C1 Control	Colour temperature change	4 bit	-	W	C	-	3.007
		Colour change (colour hue)	4 bit	-	W	C	-	3.007
		Colour change RGB (red)	4 bit	-	W	C	-	3.007
25	Channel C1 Control	Colour change (saturation)	4 bit	-	W	C	-	3.007
		Colour change RGB (green)	4 bit	-	W	C	-	3.007
26	Channel C1 Control	Colour change RGB (blue)	4 bit	-	W	C	-	3.007

No.	Object name	Function	Length	R	W	C	T	DPT
27	Channel C1 Control	Colour change white	4 bit	-	W	C	-	3.007
28	Channel C1 Control	Colour temperature status	2 bytes	R	-	C	T	7.600
		Colour status RGB	3 bytes	R	-	C	T	232.600
		Colour status RGBW	6 bytes	R	-	C	T	251.600
29	Channel C1 Control	Colour status (RGB red)	1 byte	R	-	C	T	5.001
		Colour status (colour hue)	1 byte	R	-	C	T	5.003
30	Channel C1 Control	Colour status (RGB green)	1 byte	R	-	C	T	5.001
		Colour status (saturation)	1 byte	R	-	C	T	5.001
31	Channel C1 Control	Colour status (RGB blue)	1 byte	R	-	C	T	5.001
32	Channel C1 Control	Colour status white	1 byte	R	-	C	T	5.001

5.2.2 Channel C1 Relay

No.	Object name	Function	Length	R	W	C	T	DPT
41	Channel C1 Relay	Threshold as a percentage	1 byte	-	W	C	-	5.001
		Threshold 0.. 255	1 byte	-	W	C	-	5.010
		Threshold EIS 5 (DPT9.xxx)	2 bytes	-	W	C	-	9.x
		Threshold 0.. 65535	2 bytes	-	W	C	-	7.001
		Switch object	1 bit	-	W	C	-	1.001
42	Channel C1 Relay	Logic input in AND gate	1 bit		W	C	-	1.002
		Logic input in OR gate	1 bit	-	W	C	-	1.002
		Logic input in XOR gate	1 bit	-	W	C	-	1.002
43	Channel C1 Relay	Block = 1	1 bit	-	W	C	-	1.001
		Enable = 1	1 bit	-	W	C	-	1.001
44	Channel C1 Relay	Call up/save scenes	1 byte	-	W	C	-	18.001
45	Channel C1 Relay	Enable scenes = 1	1 bit	-	W	C	-	1.003
		Block scenes = 1	1 bit	-	W	C	-	1.001
46	Channel C1 Relay	Switching with priority	2 bit	-	W	C	-	2.001
47	Channel C1 Relay	On/Off feedback	1 bit	R	-	C	T	1.001
48	Channel C1 Relay	Operating hours feedback	4 bytes	R	-	C	T	13.100
		Time to next service	4 bytes	R	-	C	T	13.100
49	Channel C1 Relay	Service required	1 bit	R	-	C	T	1.001
50	Channel C1 Relay	Reset service	1 bit	-	W	C	-	1.001
		Reset operating hours	1 bit	-	W	C	-	1.001

5.2.3 Common objects

No.	Object name	Function	Length	R	W	C	T	DPT
241	Manual button	set/reset	1 bit	-	W	C	-	1.001
242	Report manual button	report	1 bit	R	-	C	T	1.001
243	Central permanent	ON	1 bit	-	W	C	-	1.001
244	Central permanent	OFF	1 bit	-	W	C	-	1.001
245	Central switching	ON/OFF	1 bit	-	W	C	-	1.001
246	Central scenes	Call up/save	1 byte	-	W	C	-	18.001

5.3 Description of communication objects

5.3.1 Objects for the control channel

Object 1: Switching ON/OFF
1 = switch on.
0 = switch off load.
See also: parameter Switch on value.

Object 2: Brighter/darker

This object is actuated with 4-bit telegrams (DPT 3.007 Control_Dimming).
This function can be used to incrementally dim the light up or down.
In the standard application, telegrams are sent with 64 increments.
IMPORTANT: The response to 4-bit telegrams depends on the parameter Switching On and Off with a 4-bit telegram.
See appendix: 4-bit telegrams (brighter/darker)

Object 3: Dimming value
This object can be used to select the desired dimmer setting directly.
Format: 1 byte percentage value.
0 = 0\%
$255=100 \%$

Object 4: Soft switching
A 1 on this object starts a soft switching cycle, i.e.:
The brightness is gradually increased, starting from the minimum brightness.
Afterwards, the dimming value remains constant for the configured time. After this time has elapsed, the light is gradually dimmed down to the configured value after Soft OFF.
The configured minimum and maximum dimming value must be taken into account.
The cycle can be extended or prematurely terminated via telegrams.
This sequence can also be controlled using a time switch if the Time between soft ON and soft OFF parameter is set to Until soft OFF telegram.
The dimming cycle is then started with a 1 and finished with a 0.
See appendix: Using the soft switch function

Object 5: Block

Responses to the block being set and cancelled can be configured if the block function has been activated (Configuration options Channel C1 parameter page).
The block only applies when the object is received, i.e. with 0 the channel is not blocked after restoration of the bus supply.
If the parameter Behaviour when setting the block = no reaction, a running soft-switch process will not be interrupted.

Object 6: Call up/save scenes
Only available if the scene function has been activated (Configuration options parameter page).
This object can be used to save and subsequently call up scenes.
Saving stores the dimming value of the channel.
It does not matter how this dimming value is produced (whether via switch commands, central objects or the buttons on the device).
The saved dimming value is restored when it is called up.
All scene numbers from 1 to 63 are supported.
The channel can participate in up to 8 scenes.
See appendix: Scenes

Object 7: Enable scenes = 1, block scenes = 1
Blocks the scene function with a 1 or a 0 depending on the configuration.
As long as it is blocked, scenes cannot be saved or called up.

Object 8: Force, dimming value during force, force $=1$, force $=0$
The function of the force object can be configured as a 1-bit, 2-bit or 1-byte object.

Format of force object	Force			Response with force
1 bit	1 or 0 (configurable)	0 or 1 (configurable)	configurable in the application programme	
2 bit	Force On $=3$ Force Off $=2$	Deactivate force = 0 or 1	configurable in the application programme.	The last dimming value before force is restored
1 byte	$1-100 \%$	0	The triggering telegram acts simultaneously as a force dimming value	The last dimming value before force is restored

Object 9: Dimming value limitation
The dimming value can be temporarily restricted via object Dimming value limitation. This is used, for example, to ensure that basic lighting is not exceeded at night, while during the evening the full range of lighting can be used.

If the object value $=0$, the dimming value is not restricted.
If the object value is greater than 0 , then this value indicates the limit for the dimming value. If the object value is smaller than the configured minimum dimming value, then the brightness is restricted to this minimum dimming value.
If the restriction is removed, the dimming value continues to remain restricted until a new dimming command is received.
During the restriction, the Soft ON and Soft OFF times are adjusted in such a way that the speed of the brightness change remains the same as when there are no restrictions.

Object 10: Feedback On/Off
Sends the current dimming status:
1 = current dimming value is between 1% and 100%
0 = current dimming value is 0%

Object 11: Feedback in \%
Sends the new dimming value after a change as soon as a dimming process is completed, i.e. once the new set point value has been reached.
Format: 1 byte, 0 ... 255 i.e. 0 ... 100\%

Object 12: Operating hours feedback, time to next service
Only available if the operating hours counter function has been activated (Configuration options parameter page)
Reports, depending on selected type of hour counter (Hour counter and Service parameter page), either the remaining time to the next set service or the current status of the hour counter.

Object 13: Service required
Only available if the hour counter function has been activated (Configuration options parameter page) and Type of hour counter $=$ Counter for time to next service.

Reports if the next service is due.
$0=$ not due
1 = service interval has expired

Object 14: Reset service, reset operating hours
Only available if the hour counter function is activated.
(Configuration options parameter page).

5.3.2 Objects for colour control

Object 19 Colour temperature
Receives colour temperature telegrams from 1000 to 10000 K .
Object 15 to 32: Colour control RGB/RGBW

With these colour values, the colour components can either be sent together in one object or separately to several objects.
In HSV or HSVW format, the output is exclusively via separate objects.

HSV values are converted internally into RGB values before processing. After that, the process continues with RGB.

The colour value (hue) corresponds to the angle in the colour wheel, with a transition between colours every 60°. Colour angle 0° for red, 120° for green and 240° for blue.

The saturation determines the purity of the colour. 0% corresponds to neutral grey and 100% corresponds to saturated, i.e. the pure colour.

The brightness value indicates the brightness in \%. The values range from 0\% no brightness to 100% full brightness. This value corresponds to the dimming value. Thus, there is no separate object for the V -value.

RGB can be calculated from H and S. Together with the dimming value, it results in the control value.

Function	Output	No.	Object function
RGBW Switching ON/OFF (switching colour)	RGB/RGBW separate objects	15	$R G B(W)$ red
		16	$R G B(W)$ green
		17	$R G B(W)$ blue
	RGBW separate objects	18	$R G B(W)$ white
Colour temperature	Colour temperature 2 bytes	19	Colour temperature
	Colour temperature 1 byte	20	Relative colour temperature
	Colour change 4 bits	24	Colour temperature change
	Colour status 2 bytes	28	Colour temperature status
RGB colour control (approaching a fixed value)	RGB 3 bytes	19	Colour control RGB
	$R G B$ separate objects	20	RGB red
		21	$R G B$ green
		22	RGB blue
	HSV separate objects	20	HSV colour hue
		21	HSV saturation
		3	Dimming value (brightness)
RGB colour change (moving by a certain value)	RGB separate objects	24	RGB red
		25	$R G B$ green
		26	RGB blue
	HSV separate objects	24	HSV colour hue
		25	HSV saturation
		3	Dimming value (brightness)
RGB colour status	RGB 3 bytes	28	Colour status RGB

theben

Function	Output	No.	Object function
(send value on bus)	$R G B$ separate objects	29	RGB red
		30	RGB green
		31	RGB blue
	HSV separate objects	29	HSV colour hue
		30	HSV saturation
		3	Dimming value (brightness)
RGBW colour control (approaching a fixed value)	RGBW 6 bytes	19	Colour control RGBW
	RGBW separate objects	20	$R G B(W)$ red
		21	$R G B(W)$ green
		22	$R G B(W)$ blue
		23	White level
	HSVW separate objects	20	HSV(W) colour hue
		21	HSV(W) saturation
		3	Dimming value (brightness)
		23	White level
RGBW colour change (moving by a certain value)	RGBW separate objects	24	$R G B(W)$ red
		25	$R G B(W)$ green
		26	$R G B(W)$ blue
		27	White level
	HSVW separate objects	24	HSV(W) colour hue
		25	HSV(W) saturation
		3	Dimming value (brightness)
		27	White level
RGBW colour status (send value on bus)	RGBW 3 bytes	28	Colour status RGBW
	RGB separate objects	29	$R G B(W)$ red
		30	$R G B(W)$ green
		31	$R G B(W)$ blue
		32	White level
	HSV separate objects	29	HSV(W) colour hue
		30	HSV(W) saturation
		3	Dimming value (brightness)
		32	White level

5.3.3 Objects for the switching channel

Object 41: Switch object, threshold as a percentage, threshold 0..255, threshold DPT 9.xxx, threshold 0.. 65535
Input object: this object activates the set channel function (see parameter: Channel function).
The set channel function can either be activated via 1-bit telegram or by exceeding a threshold (8- or 16 -bit telegram).

Parameters		Activation of channel function via
Activation of function via	Type of threshold object	
Switch object		1-bit telegram
Exceeding the threshold	Object type: Per cent (DPT5.001)	Exceeding percentage value
	Object type: Counter value 0.255 (DPT 5.010)	Any value in given numerical range
	Object type: Counter value $0 . .65535$ (DPT 7.001)	
	Object type: EIS5 e.g. CO2, brightness (DPT 9.xxx)	2-byte floating-point number

Object 42: Logic input in AND gate, in OR gate, in XOR gate
Only available if operation is activated (Configuration options parameter page).
Forms a logical operation together with the input object to activate the channel function.

Object 43: Block
Blocks the channel function.
Response to the block being set and cancelled can be configured if the block function has been activated (Configuration options parameter page).

Object 44: Call up/save scene
Only available if the scene function has been activated (Configuration options parameter page).
This object can be used to save and subsequently call up scenes.
Saving stores the channel status.
The saved status is restored when it is called up.
All scene numbers from 1 to 64 are supported.
Each channel can participate in up to 8 scenes.
See appendix: Scenes

Object 45: Block scenes = 1, enable scenes = 1
Blocks the scene function with a 1 or a 0 depending on the configuration.
As long as it is blocked, scenes cannot be saved or called up.

Object 46: Switching with priority
Priority control:

theben

Status of obj. Switching with priority	Channel status
0	as specified by the input object
1	OFF
2	ON
3	

Object 47: On/Off feedback

Reports the current channel status.
The status can also be inverted depending on configuration.

Object 48: Time to next service, operating hours feedback
Only available if the hour counter function is activated
(Configuration options parameter page).
Reports, depending on selected type of hour counter (Operating hours counter and service parameter page), either the remaining period to the next service or the current status of the hours counter.

Object 49: Service required
Only available if the hour counter function has been activated (Configuration options parameter page) and Type of hour counter = Counter for time to next service.

Reports if the next service is due.
$0=$ not due
1 = service is due.

Object 50: Reset service, reset operating hours

Function	Use
Reset service 4	Reset service interval counter.
Reset operating hours 5	Reset hour counter

[^1]
5.3.4 Common objects

Object 241: Set/reset Manual button
Manual mode can be set/reset via an object. The object value 0 also resets a temporary key lock, if configured.

Object 242: Report Manual button
The status of the Manual mode can be read via a DPT 1.001 object.

Object 243: Central permanent ON
Central switch-on function.
$0=$ no function
1 = permanent ON
Participation in this object can be set (Configuration options parameter page).

This object takes top priority.
As long as it is set, other switch commands will not work on the participating channel.

Object 244: Central permanent OFF
Central switch-off function.
$0=$ no function
1 = permanent OFF
Participation in this object can be set (Configuration options parameter page).

This object has the second highest priority after Central permanent ON. As long as it is set, other switch commands will not work on the participating channel.

Object 245: Central switching

Central switch function.
$0=0 F F$
$1=0 \mathrm{~N}$
Participation in this object can be set (Configuration options parameter page).
With this object, the participating channel responds exactly as if its input object were receiving a switch command.

Object 246: Call up/save central scenes
Central object for using scenes.
This object can be used to save and subsequently call up scenes.
See appendix: Scenes
Object 247: Send firmware version
The version of the firmware can be queried via this DPT 217.001 object.

5.4 Parameter pages overview

5.4.1 General

Parameter page	Description
General	Activating channel buttons and Manual button.

Parameter page	
General function block	
General	Type of control and use of the switching channels
C1..C4 Control	

[^2]
5.5 General parameters

(i) The parameter Type of control must be set first of all, as it predetermines the configuration of all channels.

Type of control	C1		C2		C3		C4	
	10	-	10	-	10	--	10	--
Individual control	\checkmark							
Colour temperature	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Colour RGB	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark	\checkmark
Colour RGBW	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark

$\checkmark=$ available

- = Channel hidden: Output terminals are required for colour control by C1.

5.5.1 General parameter page

Designation	Values	Description
Type of control	Individual control	All channels are independent of each other. 4 control channels and up to 4 switching channels are available. No colour control.
	Colour temperature	Control channels C 1 and C 2 are bundled. Configuration is made in channel C1. Output terminals: $\mathrm{C} 1=$ warm white C2 $=$ cold white Channels C3 and C4 are freely available
	Colour RGB	Control channels $\mathrm{C1}, \mathrm{C2}$ and $\mathrm{C3}$ are bundled. Configuration is made in channel C 1 . Output terminals: $\begin{aligned} & C 1=\text { red } \\ & \text { C2 }=\text { green } \\ & \text { C3 }=\text { blue } \end{aligned}$ Channel C4 is freely available
	Colour RGBW	All control channels are bundled (C1 to C4). Configuration is made in channel C1. Output terminals: $\begin{aligned} & C 1=\text { red } \\ & \text { C2 }=\text { green } \\ & \text { C3 }=\text { blue } \end{aligned}$ $\text { C4 }=\text { white }$
Function of switching channel C1	Shut down control unit	The output relay works as a switch contact for the control channel. It switches depending on the dimming value: $0 \%=$ relay switched off $>0 \%$ = relay switched on. Thus, the connected control unit (e.g. 0-10 V dimmer)

Designation	Values	Description
	Switch actuator	can be switched. In the ETS, the switching channel is hidden. The switching channel is available as a switch actuator.
Function of switching channel C2, C3, C4	See C1	See C1
Channel buttons	blocked enabled	No manual operation, the buttons on the device are blocked. The channels can be operated via the buttons on the device.
Manual button	blocked applies until reset via object applies for 30 minutes or until reset via obj. applies for 1 h or until reset via obj. applies for $2 h$ or until reset via obj. applies for 4 h or until reset via obj. applies for 8 h or until reset via obj. applies for 12 h or until reset via obj. applies for 24 h or until reset via obj.	The function of the Manual button can be blocked or enabled via the parameter. An activated Manual applies for the selected time. After that, Manual will be automatically deactivated. Bus telegrams are not processed in Manual mode. The objects received during Manual mode will also not be caught up. After a bus failure, Manual mode will be reset.

5.6 Parameter for the control channel \mathbb{C}

5.6.1 Channel C1 Control: Configuration options

Designation	Values	Description
Adjust dimming value limitations	no	The standard values apply: Perform limitation when writing to object = no, Limitation applies to: - soft switching, - absolute dimming, - relative dimming, - switch command = по
	yes	The page Dimming value limitations will be shown and all parameters can be adjusted individually.
Adjust soft switching	no	The standard values apply: - Time for Soft ON = 1 min - Dimming value after Soft ON = 100% - Time between Soft ON and Soft OFF = 5 min - Dimming value after Soft OFF $=0 \%$ - Time for Soft OFF = 1 min The page Soft switching will be shown and all parameters can be adjusted individually.
Adjust block function	по	The standard values apply: - Block with 1 (standard) - Response when the block is set = 10\% - Response when cancelling the block = update

Designation	Values	Description
	yes	The page Block function will be shown and all parameters can be adjusted individually.
Participation in central objects	по yes: in all central objects only in central permanent ON only in central permanent OFF only in central switching only in central switching and permanent ON only in central switching and permanent OFF only in central permanent ON and permanent OFF	Central objects are not taken into account. Which central objects are to be taken into account? Central objects enable simultaneous switching on and off of several channels with one single object.
Adjust feedback	no yes	The standard values apply: - Format of 1-bit feedback $=$ not inverted - Send 1-bit feedback cyclically = no - Send 8-bit feedback = only after ending the dimming process. - Send 8-bit feedback cyclically = no - Time for cyclical transmission of feedback $=60 \mathrm{~min}$ The page Feedback will be shown, and all parameters can be adjusted individually.
Activate force function	по yes	No force function. The page Force function will be shown.
Activate scenes	по yes	Do not use scenes. The page Scenes will be shown.
Activate hour counter	no yes	No hour counter. The page Hour counter will be shown.

5.6.2 Colour control 7

(i)
The type of colour control is predetermined by the Type of control parameter on the General parameter page.
See chapter General parameters

Designation	Values	Description
Type of colour control ${ }^{8}$	Colour temperature $1000-10000 \text { K }$	Colour temperature
	RGB (HVS) colour	The colour can be selected directly via the Color Picker. The colour value is additionally displayed as a 6 byte hexadecimal value.
	RGBW (HSVW) colour	The colour can be selected directly via the Color Picker. The colour value is additionally displayed as a 6 byte hexadecimal value.
	White level	The white level is entered separately.
Object type $R G B(W)$	With RGB colour	
	RGB combined	1 RGB object 3 byte DPT232.600
	RGB separate objects	3 objects: red, green, blue.
	HSV separate objects	3 objects: Colour value (hue), colour saturation (saturation), light value (value).
	With RGBW colour	
	$R G B(W)$ combined	1 RGBW object 6 byte DPT251.600
	$R G B(W)$ separate objects	4 objects: red, green, blue, white level (white).
	HSV(W) separate objects	```4 objects: Colour value (hue), colour saturation (saturation), bright value (value), white level (white).```
Colour at permanent	With RGB(W) colour	
	Colour value at Permanent RGB(W) \#OOOOOO - \#FFFFFF \#FF0000 Additional white level Permanent ($R G B W$) \#OO ... \#FF [\#FF]	During Permanent ON and Force, the configured colour is set when colour control is activated
	At colour temperature	

[^3]| Designation | Values | Description |
| :---: | :---: | :---: |
| | Colour temperature at Force/Permanent On 1000-10000 K 3000 K | This parameter can be used to set which colour temperature is to be used for Force and Permanent On. |
| Response when switching on | Last object value | The last object value is used. Note: If the object value is invalid, the preset colour of the ETS is used. |
| | ETS parameters | Use ETS parameters as set above |
| Colour when switching on | At colour temperature | |
| | Colour temperature $\begin{aligned} & 1000-10000 K \\ & 3000 K \end{aligned}$ | This parameter can be used to set which colour temperature is to be used when switching on. |
| | With RGB(W) | |
| | Colour value when switching on RGB(W)
 \#OOOOOO - \#FFFFFF
 \#FF0000 | This parameter can be used to set which colour is to be used when switching on. |
| Minimum colour temperature | 1000 K.. 5000 K 2000 K | The minimum colour temperature is required for the calculation of the relative colour temperature. |
| Maximum colour temperature | 5010 K.. 10000 K 6000 K | Parameter for setting the maximum valid value for the colour temperature |
| Time during colour change via dimming | $\begin{aligned} & 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ & 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s}, 90 \mathrm{~s} \end{aligned}$ | This parameter is used to decide how quickly the colour temperature should be changed when dimming. |
| Time during colour change | $\begin{aligned} & \text { immediately } \\ & 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ & 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s}, 90 \mathrm{~s} \end{aligned}$ | This parameter is used to decide how quickly the colour temperature should be changed. |

5.6.3 Dimming response

Designation	Values	Description
Minimum dimming value	$\begin{aligned} & 1 \%, 5 \%, 10 \%, \\ & 15 \%, 20 \%, 25 \%, 30 \% \\ & 35 \%, 40 \%, 45 \%, 50 \% \end{aligned}$	Minimum dimming value for all dimming processes (except 0\%). Any values (switch-on dimming value, response to bus failure etc.) which are below this threshold are increased to the Minimum dimming value.
Maximum dimming value	$\begin{aligned} & 50 \%, 55 \%, \\ & 60 \%, 65 \%, 70 \%, 75 \%, \\ & 80 \%, 85 \%, 90 \%, 95 \%, \\ & 100 \% \text {, } \end{aligned}$	Maximum dimming value for all dimming processes. Any values (switch-on dimming value, response to bus failure etc.) which are above this threshold will be lowered to the maximum dimming value.
Type of control channel	$\begin{aligned} & 0-10 \mathrm{~V} \\ & 1-10 \mathrm{~V} \end{aligned}$	For 0-10 V control units. For 1-10 V control units.
Output voltage at $0 \%{ }^{9}$	$\begin{aligned} & 0 \text { O V, 0.5 V, 1.0 V, } 1.5 \mathrm{~V} \\ & 2.0 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V} \\ & 3.5 \mathrm{~V}, 4.0 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	Individual adjustment of the output voltage for special applications.
Output voltage at $100 \%{ }^{10}$	$\begin{aligned} & 5.5 \mathrm{~V}, 6.0 \mathrm{~V}, 6.5 \mathrm{~V}, \\ & 7.0 \mathrm{~V}, 7.5 \mathrm{~V}, 8.0 \mathrm{~V} \\ & 8.5 \mathrm{~V}, 9.0 \mathrm{~V}, 9.5 \mathrm{~V} \\ & 10.0 \mathrm{~V} \end{aligned}$	Individual adjustment of the output voltage for special applications.
Dimming time 1 from 0\% to 100\%	$\begin{aligned} & 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ & 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \end{aligned}$	This parameter defines the maximum dimming speed from 0 to 100\% For greater flexibility, 3 different values can be specified (see below).
Dimming time 2 from 0\% to 100\%	$\begin{aligned} & 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, \\ & 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \end{aligned}$	2nd pre-selectable dimming time.
Dimming time 3 from 0\% to 100\%	$\begin{aligned} & 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s} \\ & 15 \mathrm{~s}, 24 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s} \end{aligned}$	3rd pre-selectable dimming time.
When receiving a switch command (1-bit)	immediate on soft on with dimming time 1 soft on with dimming time 2 soft on with dimming time 3	The change from 0% to 100% or 100% to 0% takes place within max. 1 s . The change from 0% to 100% or 100% to 0% takes place within the preset dimming time.
When receiving a dimming command (4-bit)	immediate on soft on with dimming time 1 soft on with dimming time 2 soft on with dimming time 3	The change from 0% to 100% or 100% to 0% takes place within max. 1 s (in very quick increments), but can be interrupted by a stop command (release button). The change from 0% to 100% or 100% to 0% takes place within the preset dimming time in correspondingly slower intermediate increments.

[^4]| Designation | Values | Description |
| :---: | :---: | :---: |
| When receiving an absolute value (8bit) | immediate on
 soft on with dimming time 1
 soft on with dimming time 2
 soft on with dimming time 3 | The received dimming value is adopted immediately (max. delay 1 s).
 The change to the new dimming value takes place within the preset dimming time, proportionately to the change in value.
 Example with dimming time $1=12 \mathrm{~s}$: Change from:
 - 0 to 100% or 100 to 0% in 12 s ($=100 \%$ of 12 s)
 -25 to 50% or 50 to 25% in $3 \mathrm{~s}(=25 \%$ of 12 s)
 etc. |
| Switch-on value | Value before previous switch-off
 minimum value $\begin{aligned} & 10 \%, 20 \%, 30 \% \\ & 40 \%, 50 \%, 60 \% \\ & 70 \%, 80 \%, 90 \%, 100 \% \end{aligned}$ | The last dimming value before switching off is saved and restored.
 The configured minimum value is applied.
 The dimmer adopts the selected value after it is switched on.
 Here again, the configured Minimum dimming value needs to be taken into account. |
| Switch-on with 4bit dim telegr. | по
 yes | Defines the response if the channel is switched off and a 4-bit telegram (brighter) is received.
 See appendix: 4-bit telegrams (brighter/darker).
 Channel status remains unchanged.
 Channel is switched on and dimmed. |
| Switching off with a 4-bit dim telegr. | по
 yes | Defines the response if the channel is switched on and a 4-bit telegram (darker) is received.
 See appendix: 4-bit telegrams (brighter/darker).
 Channel status remains unchanged.
 Channel is switched off. |

5.6.4 Dimming value limitations

(1) The dimming value can be temporarily restricted via object Dimming value limitation. This is used, for example, to ensure that basic lighting is not exceeded at night, while during the evening the full range of lighting can be used.

Object description, see Object 9: Dimming value limitation.

Designation	Values	Description
Perform limitation when writing to object	по yes	Limitation will not take effect until the next dimming process. Limit the dimming value as soon as a value is received on the Dimming value limitation object.
Limitation applies to switch command (1-bit)	по yes	No limitation during switch commands. Limitation is effective.
Limitation applies to relative dimming (4-bit)	no yes	No limitation during brighter/darker commands. Limitation is effective.
Limitation applies to absolute dimming (8-bit)	по yes	No limitation for percentage value telegrams. Limitation is effective.
Limitation applies to soft switching	no yes	No limitation for soft switching. Limitation is effective.

5.6.5 Soft switching

Designation	Values	Description
Time for Soft ON	$\begin{aligned} & 0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, 15 \mathrm{~s} \\ & 24 \mathrm{~s}, 30 \mathrm{~s}, 45 \mathrm{~s}, 1 \mathrm{~min} \\ & 2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min} \\ & 6 \mathrm{~min}, 7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min} \\ & 10 \mathrm{~min}, 12 \mathrm{~min}, \\ & 15 \mathrm{~min}, 20 \mathrm{~min} \\ & 30 \mathrm{~min}, 40 \mathrm{~min}, \\ & 50 \mathrm{~min}, 60 \mathrm{~min} \\ & \hline \end{aligned}$	Duration of dim up phase (t1) for soft switching (see appendix). $0 \mathrm{~s}=$ switch on immediately. (1) For further details, see appendix : Retriggering and premature switch off.
Dimming value after Soft ON	$\begin{aligned} & 10 \%, 20 \%, 30 \% \\ & 40 \%, 50 \%, 60 \% \\ & 70 \%, 80 \%, 90 \% \\ & 100 \% \end{aligned}$	Final value at the end of Soft ON phase (Val) Comment: Here again, the configured Minimum dimming value needs to be taken into account.
Response colour value with Soft ON	last object value	Note: If the object value is invalid, the preset colour of the ETS is used.
	ETS parameters	Selected colour value or colour temperature for Soft ON.
Colour value ${ }^{11}$ at Soft ON ${ }^{12}$	Colour temperature 1000 K.. 10000 K [3000 K]	This parameter can be used to set which colour temperature is to be used for Soft ON. Setting in increments of 10
	$\begin{aligned} & \text { RGB(W) } \\ & \text { \#OOOOOO ... \#FFFFFF } \\ & \text { [\#FFFFFF] } \\ & \text { White level \#00 ... \#FF [\#FF] } \end{aligned}$	This parameter can be used to set which colour value is to be used for Soft ON.
Time between Soft ON and Soft OFF	until Soft OFF telegram $7 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$ $5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$ $10 \mathrm{~s}, 15 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}$ $40 \mathrm{~s}, 50 \mathrm{~s}, 1 \mathrm{~min}, 2 \mathrm{~min}$ $3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}, 6 \mathrm{~min}$ $7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}, 10 \mathrm{~min}$ $12 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}$, $30 \mathrm{~min}, 40 \mathrm{~min}, 50 \mathrm{~min}$, 60 min	No time restriction; Soft OFF phase is initiated by a telegram. Delay (t2) until the start of the Soft OFF phase.
Time for Soft OFF	$\begin{aligned} & 0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s} \\ & 6 \mathrm{~s}, 8 \mathrm{~s}, 12 \mathrm{~s}, 15 \mathrm{~s} \\ & 24 \mathrm{~s}, 30 \mathrm{~s}, 45 \mathrm{~s}, 1 \mathrm{~min} \end{aligned}$ $2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}$ $6 \mathrm{~min}, 7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}$ $10 \mathrm{~min}, 12 \mathrm{~min}, 15 \mathrm{~min}$, $20 \mathrm{~min}, 30 \mathrm{~min}, 40 \mathrm{~min}$, $50 \mathrm{~min}, 60 \mathrm{~min}$	Duration of the Soft OFF phase (t3). $0 \mathrm{~s}=$ switch off immediately (i) For further details, see appendix : Retriggering and premature switch off.

[^5]
theben

Designation	Values	Description
Dimming value after Soft OFF	$\begin{aligned} & 0 \%, 10 \%, 20 \%, 30 \% \\ & 40 \%, 50 \%, 60 \%, \\ & 70 \%, 80 \%, 90 \%, \\ & 100 \% \end{aligned}$	Final value at the end of the Soft OFF phase (Val) Comment: Here again, the configured minimum and maximum dimming value needs to be taken into account.
Response colour value with Soft OFF	last object value ETS parameters	Note: If the object value is invalid, the preset colour of the ETS is used. Selected colour value or colour temperature for Soft OFF.
Colour value ${ }^{13}$ at Soft OFF ${ }^{14}$	Colour temperature 1000 K.. 10000 K [3000 K]	Colour temperature at Soft OFF. Setting in increments of 10
	RGB(W) \#000000 ... \#FFFFFF [\#FFFFFF] White level \#00 \#FF [\#FF]	RGB or RGBW colour value at Soft OFF.

${ }^{14}$ Only visible if Response colour value with Soft OFF = ETS parameter

5.6.6 Block function

Designation	Values	Description
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1 \text { = cancel block } \end{aligned}$ The block is always deactivated after reset.
Response when setting the block	```no change 100% 0%,10%, 20%,30% 40%,50%,60%, 70%,80%,90%```	No response. Dim to the set value.
Response when the block is cancelled	no change Update $\begin{aligned} & 100 \%, 0 \%, 10 \%, 20 \% \\ & 30 \%, 40 \%, 50 \%, 60 \% \\ & 70 \%, 80 \%, 90 \% \end{aligned}$	No response. If a telegram was received during the block: Apply state. Otherwise: Restore state before the block. Dim to the set value.

5.6.7 Feedback

Designation	Values	Description
Format of 1-bit feedback	not inverted	Standard setting: $1-100 \%=1$ $0 \%=0$
	inverted	$1-100 \%=0$ $0 \%=1$
Send 1-bit feedback cyclically	no yes	only after ending the dimming process
Send 8-bit feedback	Send at regular intervals? when the new dimming value has been reached. every 20% every 30%	
Send 8-bit feedback cyclically	no yes	Send even during the dimming process.
Time for cyclical transmission of feedback (if available)	2 min, $3 \mathrm{~min}, 5 \mathrm{~min}$, $10 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}$, $30 \mathrm{~min}, 45 \mathrm{~min}, 60 \mathrm{~min}$	At what interval? This setting applies for both feedback objects (1 and 8-bit).

5.6.8 Force

Designation	Values	Description
Format of force object	1 bit 2 bit 1 byte (\%)	Force is triggered by: Switch telegram. Priority telegram. Dimming value.
1 bit		
Activate force function with	1 0	Recommended. After reset/download, forced operation is already activated and must be cancelled if necessary.
Behaviour at start of force	no change minimum dimming value 100\% OFF $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% $70 \%, 80 \%, 90 \%$	Response to the receipt of a force telegram. Here again, the configured Minimum dimming value needs to be taken into account.
Behaviour at end of force	update ${ }^{15}$ Value before force minimum dimming value 100\% OFF $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% $70 \%, 80 \%, 90 \%$	Response to cancellation of force. Here again, the configured Minimum dimming value needs to be taken into account.
2 bit		
Behaviour at force ON	no change minimum dimming value 100\% OFF $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% 70\%, 80\%, 90\%	Response to the receipt of a force telegram. Here again, the configured Minimum dimming value needs to be taken into account.
Behaviour at force OFF	OFF	-
Behaviour at end of force	update ${ }^{16}$ Value before force	Response to cancellation of force. Here again, the configured Minimum dimming value needs to be taken into

${ }^{15}$-bit commands received during the force (brighter/darker) will not be considered. Soft ON and Soft OFF processes will be aborted.
${ }^{164}$-bit commands received during the force (brighter/darker) will not be considered. Soft ON and Soft OFF processes will be aborted.

Designation	Values	Description
	minimum dimming value 100\% OFF $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% 70\%, 80\%, 90\%	account.
1 byte (\%)		
Behaviour at end of force	update ${ }^{17}$ Value before force minimum dimming value 100% OFF $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% $70 \%, 80 \%, 90 \%$	Response to cancellation of force. Here again, the configured Minimum dimming value needs to be taken into account.

174-bit commands received during the force (brighter/darker) will not be considered. Soft ON and Soft OFF processes will be aborted.

theben

5.6.9 Scenes

The dimming channel C1 can participate in up to 8 scenes.

Designation	Values	Description
Block telegram for scenes	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$ Note: With this setting, the scenes are always blocked immediately after reset or download.
All channel scene statuses	Overwrite on download Unchanged after download	A download deletes all scene memories of a channel, i.e. all previously taught-in scenes. When a scene number is called up, the channel assumes the configured assigned dimming value (see below). See in the appendix: Entering scenes without telegrams All previously taught-in scenes are saved. However, the scene numbers to which the channel should react can be changed (see below: Channel reacts to).
Participation in central scene object	$\begin{aligned} & \text { No } \\ & \text { yes } \end{aligned}$	Should the device react to the central scene object?
Channel reacts to	No scene number Scene number 1 Scene number 63	First of the 8 possible scene numbers to which the channel is to react.
Assigned dimming value	$\begin{aligned} & \text { Off } \\ & 10 \%, 20 \%, 30 \% \\ & 40 \%, 50 \%, 60 \% \text {, } \\ & 70 \%, 80 \%, 90 \%, 100 \% \end{aligned}$	New dimming value to be assigned to the selected scene number. Only possible if the scene statuses are to be overwritten after download.
Behaviour when receiving the scene number	immediate on	Output dimming value without delay.
	soft on at dimming speed 1 soft on at dimming speed 2 soft on at dimming speed 3	Slowly reach the dimming value with the specified delay.
Permit teach-in	No Yes	Scenes can only be called up. The user can both call up and teach in or amend scenes.

Designation	Values	Description
Colour value	RGB RGBW Colour temperature	When colour control is activated, a colour value can be assigned to the selected scene number. The parameter Type of colour control defines which values are available.
Channel reacts to	No scene number Scene number 1 Scene number 2 Scene number 63	Second of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	See above	See above
Channel reacts to	No scene number Scene number 1 Scene number 3 ... Scene number 63	Third of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	See above	See above
Channel reacts to	No scene number Scene number 1 Scene number 4 ... Scene number 63	Fourth of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	See above	See above
Channel reacts to	No scene number Scene number 1 Scene number 5 Scene number 63	Fifth of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above

theben

Designation	Values	Description
Permit teach-in	See above	See above
Colour value	See above	See above
Channel reacts to	No scene number Scene number 1 Scene number 6 Scene number 63	Sixth of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	See above	See above
Channel reacts to	No scene number Scene number 1 Scene number 7 Scene number 63	Seventh of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	RGB RGBW Colour temperature	See above
Channel reacts to	No scene number Scene number 1 Scene number 8 Scene number 63	Last of the 8 possible scene numbers.
Assigned dimming value	See above	See above
Behaviour when receiving the scene number	See above	See above
Permit teach-in	See above	See above
Colour value	See above	See above

theben

5.6.10 Hour counter and service

Designation	Values	Description
Type of hour counter	Hour counter Counter for time to next service	Forward counter for channel duty cycle. Backward counter for channel duty cycle.
Hour counter		
Reporting operating hours in the event of a change (0.. $100 \mathrm{~h}, 0$ = do not report)	$\begin{aligned} & 0 . .100 \\ & \text { Standard = } 10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading increases by another 10 hours.
Report operating hours cyclically	No yes	Send at regular intervals?
Time for cyclical transmission	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?
Counter for time to next service		
Service interval ($\times 10 \mathrm{~h}$)	$\begin{aligned} & 0 . .2000 \\ & \text { Standard }=100 \end{aligned}$	Desired time between 2 services. Example: $\begin{aligned} & 10=10 \times 10 \mathrm{~h} \\ & =100 \text { hours } \end{aligned}$
Reporting of time to service in the event of a change ($0=$ do not report)	$\begin{aligned} & 0 . .100 \\ & \text { Standard = } 10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading decreases by another 10 hours.
Report time to service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send remaining time to next service at regular intervals? \rightarrow Object Time to next service.
Report service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send expiry of time to next service at regular intervals? \rightarrow Object Service required.
Time for cyclical transmission (if used)	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?

5.6.11 Power failure and restoration

Designation	Values	Description
Dimming value during download and bus failure	same as before failure $\begin{aligned} & 100 \%, 0 \%, \\ & 10 \%, 20 \%, 30 \% \\ & 40 \%, 50 \%, 60 \% \\ & 70 \%, 80 \%, 90 \% \end{aligned}$	Restore status before download or maintain status before bus failure. Apply set value here. Here again the configured minimum dimming value needs to be taken into account.
Dimming value during restoration of the mains or bus supply	same as before failure 100\%, 0\%, $10 \%, 20 \%, 30 \%$ 40\%, 50\%, 60\% $70 \%, 80 \%, 90 \%$	Restore status before failure. Apply set value here. Here again the configured minimum dimming value needs to be taken into account.

The colour value for permanent is used as the colour

5.7 Parameters for the switching channels

\qquad

For a switching channel to be available as a switching actuator, the respective parameter Function of the switching channel ${ }^{18}$ must be set to Switching actuator. Otherwise, the relay is used internally for the control channel.

5.7.1 Channel C1: Configuration options

Designation	Values Channel function Activation of function via On/off time delay.. Pulse function.. Staircase light time switch with forewarning function.. Flashing..	Description Switch object functionality of the channel.
Adjust block function	Exceeding the threshold	The channel is operated via a 1-bit object. The channel is operated through exceeding a 1- or 2- byte threshold. See below: "Threshold" parameter page
Activate scenes	Yes..	The block function can be individually adjusted. The relevant
Parameter page is		
shown.		

[^6]| Designation | Values | Description |
| :---: | :---: | :---: |
| | in central switching, permanent ON, permanent OFF
 only in central permanent ON
 only in central permanent OFF
 only in central switching only in central switching and permanent ON only in central switching and permanent OFF only in central permanent ON and permanent OFF | Which central objects are to be taken into account?
 Central objects enable simultaneous switching on and off of several channels with one single object. |
| Adjust feedback | Yes..
 no | The feedback function can be individually adjusted.
 The relevant parameter page is shown.
 The Feedback function works with the standard parameters:
 - not inverted
 - do not send cyclically |
| Activate hour counter | Yes.. no | Is the hour counter/service interval function to be used? |
| Activate operation | $\begin{aligned} & \text { Yes.. } \\ & \text { no } \end{aligned}$ | Use logical operations with the channel object? |

5.7.2 Contact characteristics

Designation	Values	Description
Type of contact	NO contact Opening contact	Standard: The relay contact is closed when a switchon command is issued. Inverted: The relay contact is opened when a switchon command is issued.
Status during download and bus failure	OFF ON unchanged	After download or during bus or mains voltage failure... ..the relay switches off. ..the relay switches on. ...the relay remains in the same state as before. (i) If several switching operations were executed immediately before bus or mains failure, the energy may not be sufficient for an additional switching operation. In this case, the relay remains in its previous state, regardless of the parameter setting.
Status with restoration of the bus supply	OFF ON same as before failure	After restoration of bus or mains voltage... ..the relay is switched off. ..the relay switches on. ...the relay remains in the same state as before.

5.7.3 The "On/off delay.." time function

This parameter page appears if On/off delay is selected as the Channel function.

Designation		Values
Switch-on delay	$0 . .3$	Description Hours Minutes Input of desired switch-on delay in hours.
Seconds	$0 . .60$	Input of desired switch-on delay in minutes.
Switch-off delay	$0 . .255$	Input of desired switch-on delay in seconds.
Hours	$0 . .3$	Input of desired switch-off delay in hours.
Minutes	$0 . .60$	Input of desired switch-off delay in minutes.
Seconds	$0 . .255$	Input of desired switch-off delay in seconds.

5.7.4 The "Pulse" time function

This parameter page appears if Pulse function is selected as the Channel function.

Designation	Values	Description
Hours	$0 . .3$	Input of desired pulse duration in hours.
Minutes	$0 . .60$	Input of desired pulse duration in minutes.
Seconds	0.255	Input of desired pulse duration in seconds.
Pulse retriggerable (with 1 on switch object)	Yes	The pulse can be extended as often as desired via a 1-telegram
Pulse resettable (with 1 on switch object)	Yes	The pulse cannot be extended.
The pulse can be ended prematurely		
at any time via a 0-telegram.		
The pulse cannot be ended		
prematurely		

theben

5.7.5 The "Staircase light with forewarning function .." time function

This parameter page appears if Staircase light with forewarning function is selected as the Channel function.
The user can press a push button again to extend the staircase light time at any time.

Designation	Values	Description
Staircase light time (min. 1 s)	$0 . .3$	Input of desired switch-on delay in hours.
Hours	$0 . .60$	Input of desired switch-on delay in minutes.
Minutes	$0 . .255$	Input of desired switch-on delay in seconds.
Seconds	0	Determines how often the staircase light time can be extended (restarted) by pressing the button again.
The maximum sum of pulses	1..40 Default value = 5	
Duration of 1st Forewarning in s	The light switches off immediately once the staircase light time is completed.	
Default value $=10$	Once the staircase light time has expired, the light should flash briefly and then stay on for the duration of the forewarning	
Duration of 2nd Forewarning in s	0	No 2nd forewarning. At the end of the 1st Forewarning, the light will be switched off.

Example: forewarning function

Staircase light time		1st Forewarning	位	2nd Forewarning	OFF

theben

5.7.6 The "Flashing" time function

This parameter page appears if Flashing is selected as the Channel function .

Designation		Values
ON phase of flash pulse	Description	
Hours	$0 . .3$	Input of desired pulse time in hours.
Minutes	$0 . .60$	Input of desired pulse time in minutes.
Seconds	$0 . .255$	Input of desired pulse time in seconds.
OFF phase of flash pulse	$0 . .3$	Input of desired length of break in hours.
Hours	$0 . .60$	Input of desired length of break in minutes.
Minutes	$0 . .255$	Input of desired length of break in seconds.
Seconds	Until it switches off How often should it flash off telegram is received.	
	$1 x$ $2 x$ $3 x$ $4 x$ $5 x$ $7 x$ The channel flashes as often as set here.	

5.7.7 Threshold

This page is shown if the Activation of the function by exceeding threshold parameter is set.

Designation	Values	Description
Type of threshold object	Per cent (DPT5.001) Counter value $0 . .255$ (DPT 5.010) Counter value 0.. 65535 (DPT 7.001) Floating-point number (DPT9), e.g. temperature, brightness, etc.	Threshold format
Parameter for threshold object Per cent		
Threshold	$\begin{aligned} & \text { 1..99\% } \\ & \text { Default value =50\% } \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold value Switches off when: Object value < threshold value - hysteresis
Hysteresis (in \%)	$\begin{aligned} & \text { 1..99\% } \\ & \text { Default value = 10\% } \end{aligned}$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Counter value $0 . .255$		
Threshold	$\begin{aligned} & \text { 1.. } 254 \\ & \text { Default value }=127 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold value Switches off when: Object value < threshold value - hysteresis
Hysteresis	1.. 254 Default value $=5$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Counter value $0 . .65535$		
Threshold	$\begin{aligned} & \text { 1.. } 65534 \\ & \text { Default value }=1000 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold value Switches off when: Object value < threshold value - hysteresis
Hysteresis	1.. 65534 Default value $=5$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Floating-point number (DPT9), e.g. temperature, brightness, etc.)		
Threshold	$\begin{aligned} & \hline-671088.64 . . \\ & \text { 670760.96 } \\ & \text { Default value }=20 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold value Switches off when: Object value < threshold value - hysteresis
Hysteresis	0.01..	The hysteresis prevents frequent switching

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Designation } & \text { Values } & \text { Description } \\
\hline & \begin{array}{l}670760.96 \\
\text { Default value = 1 }\end{array} & \text { after small fluctuations in readings. } \\
\hline \begin{array}{l}\text { Response on exceeding the } \\
\text { threshold }\end{array} & \text { As switch object = 0 } & \begin{array}{l}\text { Should the channel switch on or off on } \\
\text { exceeding the threshold? } \\
\text { The set type of contact must be taken into } \\
\text { account here. }\end{array}
$$

NO contact: the relay switches off when

exceeding.

Opening contact: the relay switches on

when exceeding.\end{array}\right\}\)| NO contact: the relay switches on when |
| :--- |
| exceeding. |
| Opening contact: the relay switches off |
| when exceeding. |

5.7.8 Block function

This page appears when "Adjust block function" is selected on the Configuration options parameter page.

Designation	Values	Description
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { Cancel block } \\ & 1 \text { = block } \\ & 0=\text { block } \\ & 1 \text { = cancel block } \end{aligned}$ Note: The block is always deactivated after reset.
Response when setting the block	OFF ON unchanged	Switch off Switch on No response
Response when the block is cancelled	OFF ON Unchanged update	Switch off Switch on No response Restore normal operation and switch relay accordingly.

theben

5.7.9 Scenes

This page appears when the scenes are activated on the Configuration options parameter page. Each channel can participate in up to 8 scenes.

Designation	Values	Description
Block telegram for scenes	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$ Attention: With this setting, the scenes are always blocked immediately after reset or download.
All channel scene statuses	Overwrite on download Unchanged after download	A download deletes all scene memories of a channel, i.e. all previously taught-in scenes. When a scene number is called up, the channel assumes the configured "Status after download" (see below). See appendix: Teaching in scenes without telegrams All previously taught-in scenes are saved. However, the scene numbers to which the channel should react can be changed (see below: Channel reacts to).
Participation in central scene object	$\begin{aligned} & \text { No } \\ & \text { yes } \end{aligned}$	Should the device react to the central scene object?
Channel reacts to	No scene number Scene number 1 Scene number 63	First of the 8 possible scene numbers to which the channel is to react.
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	New switching status which is to be allocated to the selected scene number. Only possible if the scene statuses are to be overwritten after download.
Permit teach-in	No Yes	Scenes can only be called up. The user can both call up and teach in or amend scenes.
Channel reacts to	No scene number Scene number 1 Scene number 2 Scene number 63	Second of the 8 possible scene numbers
Status after download	$\begin{aligned} & \hline \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	No	See above.

theben

Designation	Values	Description
	Yes	
Channel reacts to	No scene number Scene number 1 Scene number 3 Scene number 63	Third of the 8 possible scene numbers
Status after download	$\begin{array}{\|l} \hline \text { Off } \\ \text { On } \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \\ \hline \end{array}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 4 Scene number 63	Fourth of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 5 Scene number 63	Fifth of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \\ \hline \end{array}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 6 Scene number 63	Sixth of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 7 Scene number 63	Seventh of the 8 possible scene numbers
Status after download	$\begin{array}{\|l\|} \hline \text { Off } \\ \text { On } \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.

Designation	Values	Description
Channel reacts to	No scene number Scene number 1 \ldots	Last of the 8 possible scene numbers
	Scene number 8 \ldots	
	Scene number 63	

5.7.10 Feedback

Designation	Values	Description
Reported status	Not inverted	Channel switched on: feedback object sends a 1
	inverted	Channel switched on: feedback object sends a 0
Send feedback cyclically	No Yes	Send at regular intervals?
Time for cyclical transmission	2 minutes, 3 minutes,	
of feedback	5 minutes, 10 minutes,	At what interval?
	15 minutes, 20 minutes,	
	30 minutes, 45 minutes	60 minutes

theben

5.7.11 Hour counter and service

This page appears when Activate hour counter is selected on the Configuration options parameter page.

Designation	Values	Description
Type of hour counter	Hour counter Counter for time to next service	Forward counter for channel duty cycle. Backward counter for channel duty cycle.
Hour counter		
Reporting operating hours in the event of a change ($0 . .100 \mathrm{~h}, 0=$ do not report)	$\begin{aligned} & 0.100 \\ & \text { Standard = } 10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading increases by another 10 hours.
Report operating hours cyclically	No yes	Send at regular intervals?
Time for cyclical transmission	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?
Counter for time to next service		
Service interval $(x 10 h)$	$\begin{aligned} & 0 . .2000 \\ & \text { Standard }=100 \end{aligned}$	Desired time between 2 services. Example: $\begin{aligned} & 10=10 \times 10 \mathrm{~h} \\ & =100 \text { hours } \end{aligned}$
Reporting of time to service in the event of a change ($0=$ do not report)	$\begin{aligned} & 0 . .100 \\ & \text { Standard = } 10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading decreases by another 10 hours.
Report time to service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send remaining time to next service at regular intervals? \rightarrow Object Time to next service.
Report service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send Expiration of time to next service at regular intervals? \rightarrow Object Service required.
Time for cyclical transmission (if used)	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?

5.7.12 Operation

Designation	Values	Description
Activate operation		Selection of logical operation with the channel object

Designation	Values	Description
	AND operation	The Logic input in AND gate object appears. The Logic input in OR gate object appears. The Logic input in XOR gate object appears.
Block object affects logic object (override)	No	The block object only affects the input object. If required, the logic object can activate the channel function despite block (with OR and XOR operation). The block object affects the input object and the logic object. The channel function is completely blocked if the block is active.

6 Application examples

6.1 $\quad 1-10 \mathrm{~V}$ lighting control

In passage areas, the lighting should be automatically controlled depending on motion and daylight. The lighting can be dimmed steplessly over 1-10 V and is controlled automatically via presence detectors.
The connected $1-10 \mathrm{~V}$ control units are automatically switched on and off via the relay contact.
Type of control = individual control

Channel	C1	C2	C3	C4
$-\infty$	separate	separate	separate	separate
-	internal with control channel			

6.1.1 Devices:

- SM 4 KNX (4940310)
- thePassa P360 KNX UP WH (2019300)

6.1.2 Overview

theben

6.1.3 Objects and links

No.	1. thePassa P360 KNX	No.	$\begin{array}{\|l\|} \hline \text { SM } 4 \text { KNX C1 Control } \\ \hline \text { Object name } \\ \hline \end{array}$	
	Object name			
0	Channel C1 Switching	1	Switching On/Off	Switch telegram
1	Channel C1 Brighter/darker	2	brighter/darker	Dimming up or down
2	Channel C1 Send value	3	Dimming value	Dimming telegram
3	Channel C1 Feedback value	11	Feedback in \%	Feedback
	2. thePassa P360 KNX		SM 4 KNX C2 Control	
0	Channel C1 Switching	61	Switching On/Off	Switch telegram
1	Channel C1 Brighter/darker	62	brighter/darker	Dimming up or down
2	Channel C1 Send value	63	Dimming value	Dimming telegram
3	Channel C1 Feedback value	71	Feedback in \%	Feedback
	3. thePassa P360 KNX		SM 4 KNX C3 Control	
0	Channel C1 Switching	121	Switching On/Off	Switch telegram
1	Channel C1 Brighter/darker	122	brighter/darker	Dimming up or down
2	Channel C1 Send value	123	Dimming value	Dimming telegram
3	Channel C1 Feedback value	131	Feedback in \%	Feedback
	4. thePassa P360 KNX		SM 4 KNX C4 Control	
0	Channel C1 Switching	181	Switching On / Off	Switch telegram
1	Channel C1 Brighter/darker	182	brighter/darker	Dimming up or down
2	Channel C1 Send value	183	Dimming value	Dimming telegram
3	Channel C1 Feedback value	191	Feedback in \%	Feedback

theben

6.1.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters.

SM 4
Parameter page Parameters Setting General Type of control Individual control Function of switching channel C1 Shut down control unit Function of switching channel $C 2$ Shut down control unit Function of switching channel C3 Shut down control unit Function of switching channel C4 Shut down control unit

thePassa P360 KNX UP WH

Parameter page	Parameters	Setting
General	Operating mode	Master
	Function of channel C1 Light	Constant lighting control

6.2 Colour temperature control 0-10 V

The lighting is to be controlled automatically via presence detectors depending on presence and the amount of daylight. The presence detector also provides current measurement values for the CO2 value and relative humidity in the room.
The lighting is to be dimmed and switched manually via tactile sensor, while the colour temperature can also be adjusted. The colour temperature has an influence on human wellbeing and can be stimulating (high colour temperature/cold light) or calming (low colour temperature / warm light).
For colour temperature control, the channels "S" C1 + C2 are used. Channel "R" C1 switches the power unit of the colour temperature control.
Channel " R " C2 is available as a separate switching channel for individual applications. Channels "S" C3 and C4, as well as the channels "R" C3, C4 are used for individual control and switching of further consumers. These channels are not part of this application example.

Type of control = colour temperature

Channel	C1	C2	C3	C4
CW	CW Cold white	WW Warm white	separate	separate
-	internal with control channel	Separate switching channel	Internal with control channel OR as a separate switching channel	Internal with control channel OR as a separate switching channel

6.2.1 Devices

- SM 4 KNX (4940310) thePrema P360 KNX AP Multi WH (2079900), consisting of presence detector KNX and room air sensor AMUN 716 S KNX
- iON 104 KNX (4969234)

6.2.2 Overview

theben

6.2.3 Objects and links

No.	iON 104	No.	SM 4 KNX	Comment
	Object name		Object name	
10	Button T1 Switching	1	Channel C1 Switching	Switching light on/off
		10	Channel C1 Feedback On/Off	Report status
11	Button T1 Brighter	2	Channel C1 Brighter/darker	Dimming light brighter
30	Button T2 Switching	1	Channel C1 Switching	Switching light on/off
		10	Channel C1 Feedback On / Off	Report status
31	Button T2 Darker	2	Channel C1 Brighter/darker	Dimming light darker
50	Button 3.1 send colour temperature	19	Channel C1 Colour temperature	Low (warm) colour temperature
70	Button 4.1 send colour temperature	19	Channel C1 Colour temperature	High (cold) colour temperature

No.	thePrema P360 KNX	No.	SM 4 KNX	Comment
	Object name		Sol	Switching light on/off
0	Channel C1 Switching	1	Channel C1 Switching	Dimming light
1	Channel C1 Brighter/darker	2	Channel C1 Brighter/darker	Set dimming value (\%)
2	Channel C1 Send value	3	Channel C1 Dimming value	Report dimming value (\%)
3	Channel C1 Feedback value	11	Channel C1 Feedback \%	

No.	AMUN 716 S KNX	No.	KNX visualisation	Comment
	Object name		Object name	

theben

6.2.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters
SM 4 KNX

Parameter page	Parameters	Setting
General	Type of control	Colour temperature
	Function of switching channel C1	Shut down control unit
	Function of switching channel $C 2$	Switch actuator
	Function of switching channel C3	any
	Function of switching channel C4	any

thePrema P360 KNX

Parameter page	Parameters	Setting
General	Function channel C1 Light	Constant lighting control

iON 104 KNX

Parameter page	Parameters	Setting
General	Device type	iON 104 KNX
Settings	Function	Dimming
Button T1	Response to long/short	brighter/change over
Configuration options	Function	Dimming
Dimming	Response to long/short	darker/change over
Configuration options	Dimming	Colour temperature DPT7.600 (2 byte)
Button T3	Object type	Colour temperature DPT7.600 (2 byte)
Button T4		

6.3 Colour control RGBW ($0-10 \mathrm{~V}$)

An LED lighting is to be controlled in brightness and colour. The control is effected over 0-10 V. The lighting is to be dimmed and switched manually via a tactile sensor, while also 12 predefined colours can be set.
For RGBW colour control, the channels "S" C1 (red), C2 (green), C3 (blue) and C4 (white) are used. Channel "R" C1 switches the power unit of the colour control.
Channels "R" C2, C3, C4 are used for individual switching of further consumers. These channels are not part of this application example.

Type of control = colour RGBW

Channel	C1	C2	C3	C4
\sim	R	G	B	W
-	internal with control channel	Separate switching channel	Separate switching channel	Separate switching channel

6.3.1 Devices

- SM 4 KNX (4940310)
- iON 108 KNX (4969238)

6.3.2 Overview

6.3.3 Objects and links

No.	iON 108	No.	SM 4 KNX	Comment
	Object name		Object name	
10	F1 switching	1	Channel C1 Switching	Switching light on/off
		10	Channel C1 Feedback On/Off	Report status
11	F1 Brighter/darker	2	Channel C1 Brighter/darker	Dimming light brighter
12	F1 Dimming value feedback \%	11	Channel C1 Feedback in \%	Report status
20	F2 RGBW value	19	Channel C1 Colour control RGBW	Set colour
		28	Channel C1 Colour status RGBW	Report current colour

theben

6.3.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters
SM 4 KNX

Parameter page	Parameters	Setting
General	Type of control	Colour RGBW
	Function of switching channel C1	Shut down control unit
	Function of switching channel C2	Switch actuator
	Function of switching channel C3	Switch actuator
	Function of switching channel C4	Switch actuator

OON 108 KNX

Parameter page	Parameters	Setting
Function F1	Function	Dimming
Configuration options	Response to long/short	Brighter at top/change over Darker at bottom/change over
Function F2		
Configuration options	Function	RGBW colour value
	Mode of operation	Value list
Value list	Length of list	12

7 Appendix

7.1 Priorities

Dimming values and commands are processed in blocks. Each block processes the commands of previous blocks and makes changes if necessary. The result is forwarded to the subsequent block. Blocks with higher priority can thus block the commands of blocks with lower priority.

Switching

The objects of the Switching block have the lowest priority. A new object overwrites the switching status of previous objects. All objects are equal.

Block

During a block, the objects from the Switching block are not forwarded. However, they will be processed if they are needed when the block is cancelled.

Force

The dimming values from Block and Scene are ignored during Force. Block and scene are equal.

Permanent Off

The dimming values from Force are not forwarded during Permanent Off.

Permanent On

The dimming values from Permanent Off are not forwarded during Permanent On.

Buttons

The channel buttons have the highest priority and can overwrite Permanent On.

7.2 Using the soft switch function

7.2.1 General

The soft switch function is a cycle consisting of switching on, dimming up, maintaining target brightness, dimming down and switching off.

7.2.2 Soft ON for staircase lighting

The following function is recommended for staircase lighting:
When the light push button is operated: Full brightness.
After the desired time has elapsed: Slow dimming down and basic lighting.

A	Push button sends Soft ON telegram.
t1	The Soft ON time is equal to 0, i.e. the "Dim up slowly" function is deactivated
B	The brightness is immediately adjusted to the configured value after Soft ON
t2	Configured time between Soft ON and Soft OFF 19
t2 elapses	
C	Perhaps, t2 has been extended with another Soft ON telegram Start of the Soft OFF phase
t3	the brightness is gradually reduced within the configured time for Soft OFF
D	t3 has elapsed and it is dimmed to the configured value after Soft OFF (e.g. 25\%). The configured minimum and maximum dimming value must be taken into account

The light can be switched off with a Soft OFF telegram or dimmed to the value after Soft OFF. A Soft ON telegram can be used to retrigger.

[^7]
7.2.3 Driveway lighting

A motion detector activates the dimmer via the Soft switching object.
The lighting is dimmed up within 5 seconds if a movement is detected.
This delay gives the eyes enough time to adjust to the light without being dazzled.
The lighting is gradually dimmed down within a minute and then switched off after the configured time has elapsed or a Soft OFF telegram is received via the button or via the motion detector (cyclic).

A Soft ON is sent by the motion detector:
The brightness is immediately adjusted to the configured Minimum dimming value
t1 The brightness is gradually increased within the configured time for Soft ON (5 s)
B Configured value after Soft ON is reached
t2 Time between Soft ON (1) and Soft OFF
C Soft OFF telegram was received or configured time has elapsed: Start of the Soft OFF phase
t3 The brightness is gradually reduced within the configured time for Soft Off
t3 has elapsed and it is dimmed to the configured value after Soft OFF (0\%). The configured minimum and maximum dimming value must be taken into account

theben

7.2.4 Simulation of daily routine

Using a time switch, it is possible to simulate an entire daily routine with sunrise and sunset. To do this, the Time between Soft ON and Soft OFF parameter needs to be set to Until Soft OFF telegram (See object Soft switching).

The time switch sends a Soft ON telegram ($=1$) in the morning and a Soft OFF telegram $(=0)$ in the evening to object Soft switching.

Min.	Configured Minimum dimming value
Val.	Target dimming value, i.e. configured Dimming value after Soft ON
$\mathrm{t}(\mathrm{h})$	Time sequence

A
Soft $O N$ is sent by the timer:
The brightness is immediately adjusted to the configured Minimum dimming value
t1 The brightness is gradually increased within the configured Time for Soft ON
B Configured Value after Soft ON is reached
t2 Time between Soft ON (1) and Soft OFF telegram (0) programmed in the time switch
C Soft OFF telegram has been received: Start of the Soft OFF phase
t3 The brightness is gradually reduced within the configured Time for Soft Off
D t3 has elapsed and it is dimmed to the configured value after Soft OFF (0\%). The configured minimum and maximum dimming value must be taken into account

7.2.5 Retriggering and premature switch off

It is also possible to influence the soft switching process while it is still active. Depending on which phase is currently being executed, the following responses can be triggered by Soft ON and Soft OFF telegrams.

Telegram	Response
Soft ON during t1	none
Soft ON during t2	t2 is restarted
Soft ON during t3	a new Soft ON process is started. See below.
Soft OFF during t1	The Soft ON process is stopped and the Soft OFF phase started immediately. See below.
Soft OFF during t2	the Soft OFF phase starts immediately
Soft OFF during t3	none

7.2.6 Soft OFF telegram during a Soft ON process

The duration of the Soft OFF phase (t3') is always equivalent to the configured time, regardless of the current dimming value.

Example 1: Soft OFF at the start of the Soft ON phase.

Example 2: Soft OFF at the end of the Soft ON phase.

A	A Soft ON process is started
B	A Soft OFF telegram is received: The Soft ON phase is interrupted and a Soft OFF phase starts.
t^{\prime}	Duration of the Soft OFF phase $=$ configured Soft OFF time
D^{\prime}	End of the Soft OFF phase

7.2.7 Soft ON telegram during a Soft OFF process

The duration of the Soft ON phase ($\mathrm{t} \mathrm{T}^{\prime}$) is always equivalent to the configured time regardless of the current dimming value.

Example 3: Soft ON at the start of the Soft OFF phase.

Example 4: Soft ON at the end of the Soft OFF phase.

Sequence:

A	A Soft OFF process is started
B	A Soft OFF telegram is received: The Soft OFF phase is interrupted and a Soft ON phase starts.
t1	Duration of the Soft ON phase = configured Soft ON time
D^{\prime}	End of the Soft ON phase

7.3 Using the force function

Example: Lighting with brightness control during the daytime and minimum lighting during the night.

A brightness controller continuously measures the brightness of the room and controls the dimmer, to keep the brightness constant.
A dimming value of 20% is configured for forced operation.
In the evening at the close of work, the time switch activates forced operation, which dims down the brightness to 20%.
During the night, the lighting is switched on for a certain period of time by the night-watchmen via the central permanent ON function.
In the morning at the start of work, the time switch cancels the forced operation again and the dimmer is controlled by the brightness control.

A	Forced operation is cancelled by the time switch. As the daylight is not yet bright enough, the brightness control controls the dimmer
B	The daylight is now bright enough to illuminate the room, and the dimmer is switched off
C	Heavy cloud cover, the dimmer compensates for the lack of bright daylight
D	Clear sunshine, the dimmer is turned back down
E	Late afternoon, the dimmer gradually replaces the receding daylight
F	Forced operation is activated by the time switch The dimmer reduces the light to 20%
G	Central permanent $0 \mathrm{n}=1$
H	Central permanent On =0
n	During the night time, the configured value for forced operation applies
c	Night round of security guards: The lighting is switched on via central permanent On
m	Morning: Daylight increases and the brightness control slowly reduces the dimming value
e	Evening: Daylight decreases and the brightness control slowly increases the dimming value
	During the daytime, the dimmer is controlled by the lighting control according to the brightness of the sunlight

7.4 4-bit telegrams (brighter/darker)

7.4.1 Telegram format 4-bit EIS 2 relative dimming:

Bit 3	Bits 0-1-2	
Direction	Dimming range divided into increments	
	Code	Increments
Dimming up:	1	000
Dimming down:	0	001
	010	Stop
	011	1
	100	2
	101	4
	110	8
	111	16
	32	
		64^{20}

Examples: $\quad 1111=$ dim brighter by 64 increments 0111 = dim darker by 64 increments
$1101=$ dim brighter by 16 increments

[^8]
theben

7.4.2 The parameters: Switching on/off with a 4-bit telegram

In general, the setting yes is required.
The setting no is available for use with special customer requests, e.g. in conference rooms.
The situation is described as follows:
A whole group of dimmer channels is operated by a push button (4-bit).
A certain lighting situation has been set by a scene or other means - e.g. channel 1 OFF, channel 240%, channel 350%. The requirement is to now dim up and increase the brightness of the entire scene, but the channels in the OFF state should remain off
The parameters Switching on/off with a 4-bit telegram block the usual switch on/ off function of the 4-bit telegram.

Parameter Switch-on with 4-bit telegram	4-bit Telegram	Dimmer output status	Response
yes	brighter/darker	Switched on $(1 \% \ldots . .100 \%)$	Channel is normally dimmed.
	brighter	Off	Channel is switched on and dimmed brighter.
	brighter	Off	Dimmer remains switched off.
	brighter/darker	Switched on $(1 \% \ldots .100 \%)$	Channel is normally dimmed.

Parameter Switching off with a 4-bit telegram	4-bit Telegram	Dimmer output status	Response
yes	brighter/darker	Switched on $(1 \% \ldots . .100 \%)$	Channel is normally dimmed.
	darker	On	The channel is switched off if the push button is kept pressed for longer than approx. 2 s when the minimum brightness is reached.
no	darker	On	Channel can be dimmed down to the minimum brightness, but is not switched off.
	brighter/darker	Switched on $(1 \% . . .100 \%)$	Channel is dimmed in range from min. to 100\% and remains switched on.

7.5 Scenes

7.5.1 Principle

The current status of a channel, or of a complete device, can be stored and retrieved later at any time via the scene function.

Each channel can participate simultaneously in up to 8 scenes.
Scene numbers 1 to 64 are permitted.
Permission to participate in scenes must be granted for the relevant channel via parameter. See Activate scenes parameter and Scenes parameter page.

The current status is allocated to the appropriate scene number when a scene is saved.
The previously saved status is restored when a scene number is called up.
This allows a device to be easily and conveniently integrated into any user scene.
The scenes are permanently stored and can be retained even after the application has been downloaded again.
See "All channel scene statuses" parameter on the Scenes parameter page.

7.5.2 Calling up or saving scenes:

To call up or save a scene, the relevant code is sent to the corresponding scene object.

Scene	Call up		Save	
	Hex.	Dec.	Hex.	Dec.
1	\$00	0	\$80	128
2	\$01	1	\$81	129
3	\$02	2	\$82	130
4	\$03	3	\$83	131
5	\$04	4	\$84	132
6	\$05	5	\$85	133
7	\$06	6	\$86	134
8	\$07	7	\$87	135
9	\$08	8	\$88	136
10	\$09	9	\$89	137
11	\$0A	10	\$8A	138
12	\$0B	11	\$8B	139
13	\$0C	12	\$8C	140
14	\$OD	13	\$8D	141
15	\$0E	14	\$8E	142
16	\$0F	15	\$8F	143
17	\$10	16	\$90	144
18	\$11	17	\$91	145
19	\$12	18	\$92	146
20	\$13	19	\$93	147
21	\$14	20	\$94	148
22	\$15	21	\$95	149
23	\$16	22	\$96	150
24	\$17	23	\$97	151
25	\$18	24	\$98	152
26	\$19	25	\$99	153
27	\$1A	26	\$9A	154
28	\$1B	27	\$9B	155
29	\$1C	28	\$9C	156
30	\$1D	29	\$9D	157
31	\$1E	30	\$9E	158
32	\$1F	31	\$9F	159
33	\$20	32	\$AO	160
34	\$21	33	\$A1	161
35	\$22	34	\$A2	162
36	\$23	35	\$A3	163
37	\$24	36	\$A4	164
38	\$25	37	\$A5	165
39	\$26	38	\$A6	166
40	\$27	39	\$A7	167
41	\$28	40	\$A8	168
42	\$29	41	\$A9	169
43	\$2A	42	\$AA	170
44	\$2B	43	\$AB	171
45	\$2C	44	\$AC	172
46	\$2D	45	\$AD	173
47	\$2E	46	\$AE	174
48	\$2F	47	\$AF	175
49	\$30	48	\$B0	176
50	\$31	49	\$B1	177

Scene	Call up		Save	
	Hex.	Dec.	Hex.	Dec.
51	$\$ 32$	50	$\$$ B2	178
52	$\$ 33$	51	$\$$ B3	179
53	$\$ 34$	52	$\$ B 4$	180
54	$\$ 35$	53	$\$$ B5	181
55	$\$ 36$	54	$\$ B 6$	182
56	$\$ 37$	55	$\$ B 7$	183
57	$\$ 38$	56	$\$ B 8$	184
58	$\$ 39$	57	$\$ B 9$	185
59	$\$ 3 A$	58	$\$ B A$	186
60	$\$ 3 B$	59	$\$ B B$	187
61	$\$ 3 C$	60	$\$ B C$	188
62	$\$ 3 D$	61	$\$ B D$	189
63	$\$ 3 E$	62	$\$ B E$	190
64	$\$ 3 F$	63	$\$ B F$	191

Examples (central or channel-related):
Call up status of scene 5 :
\rightarrow Send \$04 to the relevant scene object.
Save current status with scene 5 :
\rightarrow Send $\$ 84$ to the relevant scene object.

theben

7.5.3 Teaching in scenes without telegrams

Instead of defining scenes individually by telegram, this can be done in advance in the ETS. This merely requires the All channel scene statuses parameter (Scenes parameter page) to be set to Overwrite on download.

The required status can then be selected for each of the 8 possible scene numbers of a channel (= Status after download parameter).
After the download, the scenes are already programmed into the device.

Later changes via teach-in telegrams are possible if required and can be permitted or blocked via a parameter.

7.5.4 Store light scenes in a push button

Scenes are normally stored in the dimmer itself.
For this, the object Call up/save scenes is used.
However, if the lighting scenarios are to be stored externally, for example with a scene-capable push button, the following steps can be taken:
The dimmer has one dimming object (dimming value) and one feedback object (feedback in \%). Thus, 2 group addresses are used, hereafter referred to as "Gr.addr.1" and "Gr.addr.2".

7.5.5 Allocation of group addresses and setting of object flags

x = user-defined

Feedback to the dimmer should not be configured for cyclical sending.

7.6 Conversion of percentages to hexadecimal and decimal values

Percentage value	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Hexadecimal	00	1 A	33	4 D	66	80	99	B3	CC	E6	FF
Decimal	00	26	51	77	102	128	153	179	204	230	255

All values from 00 to $F F$ hex. (0 bis 255 dec.) are valid.

[^0]: ${ }^{1}$ The channel is freely available as a standard control channel without colour control
 2 The channel is freely available as a standard control channel without colour control
 ${ }^{3}$ The channel is freely available as a standard control channel without colour control

[^1]: 4 Depending on configuration
 ${ }^{5}$ Depending on configuration

[^2]: ${ }^{6}$ Not available with Type of control = Individual control

[^3]: ${ }^{7}$ Not available with Type of control = Individual control
 ${ }^{8}$ This parameter is not adjustable and is only displayed here.

[^4]: ${ }^{9}$ Only if type of control channel $=0-10 \mathrm{~V}$
 ${ }^{10}$ Only if type of control channel $=0-10 \mathrm{~V}$

[^5]: ${ }^{11}$ or colour temperature
 ${ }^{12}$ Only visible if Response colour value with Soft ON $=$ ETS parameter

[^6]: ${ }^{18}$ Parameter page General

[^7]: ${ }^{19}$ Soft OFF via configured time or via Soft OFF telegram.

[^8]: ${ }^{20}$ typical application.

